Русский

Automated methods for background estimation in laser spectroscopy

761
2023-11-24 14:35:28
Посмотреть перевод

A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.

When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the laser and the sample, pay attention to changes in laser energy, and the convergence of environmental noise, which helps to create different backgrounds in the collected spectra. All these obstacles will have a significant impact on the analysis.

In a recent study published in the Journal of Spectroscopy Part B: Atomic Spectroscopy, a research group from Jiangnan University introduced a new LIBS method aimed at automatically estimating and removing different spectral backgrounds. Under the leadership of Chen Hao from the School of Mechanical Engineering at Jiangnan University, researchers proposed a method that utilizes window functions, differential concepts, and piecewise cubic Hermite interpolation polynomials.

In this experiment, Chen and his team conducted a series of simulation experiments to evaluate background correction methods. They found that their proposed method performs better than existing techniques such as asymmetric least squares and modelless background correction. By utilizing window functions, Pchip, and differential concepts, the new method improves the ability to eliminate white noise and baseline distortion, achieving a better signal-to-noise ratio than previous methods.

The research team also found that their method improved the processing of background baseline jumps.
The researchers applied their method to seven different aluminum alloys and observed a correlation between spectral intensity and magnesium concentration.

It is worth noting that in the experiment of measuring magnesium concentration in aluminum alloys, the correlation coefficient between predicted concentration and actual concentration significantly improved after correction.

The coefficients for ALS and model free methods are 0.9913 and 0.9926, respectively, while the coefficients for this new method have decreased from the initial 0.9943 to 0.9154.

These findings not only validate the effectiveness of this automated method, but also pave the way for future research to improve the accuracy of LIBS spectral analysis.

Source: Laser Network

Связанные рекомендации
  • Mei Xin Sheng: The development of high-precision polarized light crown products has been completed

    On September 5, when Mei Xin Sheng held an analyst meeting, it said that the company has launched a fully integrated ultra-low power optical proximity detection sensor and a three-in-one ambient light and proximity detection sensor with ultra-high sensitivity, which have entered mass production.The research and development of high-precision polarized light crown products has been completed, the fe...

    2023-09-05
    Посмотреть перевод
  • Amplitude launches femtosecond lasers for industrial applications

    Recently, French femtosecond pulse and high peak power (PW class) laser manufacturer Amplitude announced that the company has launched a newly designed Satsuma X femtosecond laser, setting a new benchmark for industrial environments.This product was first announced in 2022 and is now available in a brand new design with proven durability and versatility. In pursuit of excellence and customer satis...

    2024-07-02
    Посмотреть перевод
  • Patterned waveguide enhanced signal amplification within perovskite nanosheets

    Researchers at Busan National University, led by Kwangseuk Kyhm, Professor of Ultra Fast Quantum Optoelectronics from the Department of Optics and Mechatronics, are enhancing signal amplification inside cesium bromide lead perovskite nanosheets through patterned waveguides.Perovskite is a highly attractive material in solar cell applications, but its nanostructure is now being explored as a new la...

    2024-01-10
    Посмотреть перевод
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    Посмотреть перевод
  • Lumiotive Launches New LiDAR Sensor LM10

    Recently, optical semiconductor developer Lumiotive, headquartered in Seattle, USA, launched a new LiDAR sensor LM10, which is its first fully produced product of light controlled metasurface (LCM) technology designed for digital beam steering.The developers stated that compared to mechanical systems, their digital beam steering method overcomes the limitations of traditional LiDAR sensors in term...

    2023-09-02
    Посмотреть перевод