Русский

Researchers develop innovative quantum dot lasers for advanced frequency combs

688
2023-11-17 14:36:44
Посмотреть перевод

Researchers at the University of California, Santa Barbara have made significant breakthroughs in laser technology, introducing a groundbreaking quantum dot mode-locked laser that allows for independent generation of amplitude and frequency modulation combs from a single device. This cutting-edge dual mode laser paves the way for the creation of small-sized and energy-efficient frequency combs for silicon photonic integrated circuits in data centers and various other applications.

The UCSB research team led by John Bowers designed the QD platform, which can manufacture devices with bandwidth comparable to the most advanced QD mode-locked lasers currently available. The AM and FM pulse widths generated by UCSB devices meet the latest standards for QD mode-locked lasers.

The significance of this development lies in the potential enhancement of optical frequency combs, which have been proven to have immeasurable value in remote sensing, spectroscopy, and optical communication. However, traditional amplitude modulation frequency combs pose challenges to dense wavelength division multiplexing systems due to their high instantaneous power, resulting in strong thermal nonlinearity. In order to effectively generate a wide and efficient optical frequency comb, precise engineering design of the group velocity dispersion of the waveguide is necessary.

UCSB researchers solved this challenge by utilizing collision pulse structures, which enable QD mode-locked lasers to have impressive fast repetition rates of 60 GHz. This helps to support DWDM systems while minimizing channel crosstalk during data transmission. In addition, the laser cavity is designed with a length of 1.35 mm and a width of 2.6 μ The laser cavity of m achieves a 3 dB optical bandwidth of up to 2.2 THz in the telecommunications O-band, with an impressive electro-optical insertion and removal efficiency of over 12%.

In order to generate FM combs, in addition to the group velocity dispersion of the waveguide, the nonlinear characteristics of the laser active region also play a crucial role. The QD mode-locked laser exhibits an astonishing -5 dB four-wave mixing efficiency, which helps generate FM combs efficiently and robustly. It is fascinating that the gain dynamics of quantum dot lasers determine the mechanism behind the formation of FM and AM combs. The formation of AM combs requires slow gain through low injection current, while FM combs rely on fast gain to generate significant Kerr nonlinearity and four-wave mixing.

In an equally eye-catching discovery, researchers have demonstrated the ability to effectively design Kerr nonlinearity in quantum dot lasers, expanding the FM comb bandwidth without the need for GVD engineering. By applying voltage to the saturable absorber portion of the laser, this method not only improves the performance of the FM comb, but also simplifies the manufacturing process. Compared with traditional quantum well diode lasers, quantum lasers have strong Kerr nonlinearity and four-wave mixing capabilities, making them more suitable for generating FM combs in the optical communication frequency band.

Compared with FM combs produced by other integrated optical frequency comb technologies, the FM combs produced by this new technology have better size, weight, power consumption, and cost characteristics, which demonstrate the strength of QD lasers. The wide range of characteristics of FM combs makes them very suitable for high-capacity optical communication systems, and their performance is superior to traditional AM combs.

Excitingly, the technology developed by UCSB researchers is also compatible with complementary metal oxide semiconductor technology, further highlighting its potential for practical implementation.

This groundbreaking study has been published in "Light: Science and Applications", a renowned scientific journal specializing in the field of optics.

Source: Laser Network

Связанные рекомендации
  • Analysis of Development Prospects and Technological Trends in the Optical Industry

    As a core supporting field of modern technology, the optical industry has broad and diversified development prospects, benefiting from the cross drive of multiple emerging technologies. The following is a systematic analysis from the perspectives of technology trends, application areas, challenges, and opportunities: Core driving forces and growth areas1. Optical communication and 5G/6GDemand ex...

    04-30
    Посмотреть перевод
  • Statsndata predicts that the light detection and ranging market will experience vigorous development globally in 2029

    The Light Detection and Ranging (LiDAR) market embodies the technology of remote sensing, surveying, and the use of laser pulses to measure distance and generate detailed three-dimensional models of objects, terrain, and environment.The LiDAR system emits a laser beam and measures the time required for the light to return to the surface, creating accurate and high-resolution digital representation...

    2023-08-31
    Посмотреть перевод
  • The influence of laser beam drift on SLM thin-walled TC11 specimens at high scanning speed

    AbstractDue to the width of the laser melt pool and the sintering effect on the surrounding powder, the experimental size of the selective laser melting (SLM) sample will be larger than the design size, which will greatly affect the dimensional accuracy and surface quality of the thin-walled sample. In order to obtain SLM thin-walled TC11 specimens with precise dimensions, an orthogonal experiment...

    02-24
    Посмотреть перевод
  • Scientists use glass to create femtosecond lasers

    Image source: Federal Institute of Technology in Lausanne, SwitzerlandScience and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glas...

    2023-09-28
    Посмотреть перевод
  • Scientists have developed the most powerful ultraviolet laser using LBO crystals

    It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.The laser in DUV spectroscopy has many applications in science and technology, such as defect detecti...

    2024-04-07
    Посмотреть перевод