Русский

Alliance unit Radiant High Tech Blue Purple Laser Assists in Ocean Exploration

701
2023-11-06 16:48:16
Посмотреть перевод

The ocean covers over 71% of the Earth's surface, and so far humans have only explored about 5% of the ocean. This means that there are still 95% of the depths of the ocean that we know nothing about, making it the most mysterious and unknown place on our planet.

600 years ago, Zheng He led a fleet to play the prelude to the era of great navigation, laying the foundation for us to understand the world and the ocean. Today, 600 years later, our curiosity about the depths of the ocean has accelerated the pace of scientific research.

Recently, the LTH/LTB series - blue purple multi wavelength laser independently developed by Ra Chuang High Tech has output wavelengths including 375nm, 405nm, 425nm, 450nm, and other wavelengths. It has high beam quality, high power, high stability, and dynamically adjustable power. It has implemented long-distance and high-power lighting in the deep sea bottom, and combined with imaging systems for fluorescence detection of seabed sediments. The detection results have been highly recognized by experts.

It is reported that blue and purple light with wavelengths ranging from 375nm to 450nm have lower attenuation rates in the ocean compared to other wavelengths. At the same energy, it can achieve long-distance detection and stimulate fluorescence spectra. At the same time, due to the small size, high sealing requirements, low energy consumption, and long working hours of underwater operation equipment, laser light sources can meet the above technical requirements, making it the optimal lighting source choice for underwater exploration.

Source: Alliance unit Radiant Technology

Связанные рекомендации
  • Massachusetts University team achieves new breakthrough in photolithography chip

    Recently, a research team from the University of Massachusetts Amherst has pioneered a new technology that uses laser irradiation on concentric superlenses on chips to generate holograms, thereby achieving precise alignment of 3D semiconductor chips.This research result, published in the journal Nature Communications, is expected to not only reduce the production cost of 2D semiconductor chips, bu...

    2024-11-06
    Посмотреть перевод
  • The team has developed a method for integrating an electro-optic modulator device on the end face of a single-mode fiber optic jumper

    Electro optical modulators (EOMs) are the main components in optical communication networks, which can control the amplitude, phase, and polarization of light through external electrical signals.In order to achieve ultra compact and high-performance EOM, most of today's research focuses on on-chip devices that combine semiconductor technology with state-of-the-art tunable materials. However,...

    2023-08-24
    Посмотреть перевод
  • The physicist who built the ultrafast "attosecond" laser won the Nobel Prize

    Pierre Agostini, Ferenc Krausz, and Anne L'Huillier won the award for their ultra short optical pulses, which made close research on electrons possible.Ferenc Klaus, Anne Lullier, and Pierre Agostini (from left to right)Image sources: BBVA Foundation, Kenneth Ruona/Lund University, Ohio State UniversityThis year's Nobel Prize in Physics was awarded to three physicists - Pierre Agostini of Ohio St...

    2023-10-09
    Посмотреть перевод
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    2024-04-03
    Посмотреть перевод
  • Aston University is the first to adopt innovative laser detection technology using MEMS mirrors

    The School of Engineering and Physical Sciences at Aston University, located in Birmingham, UK, is at the forefront of exploring innovative laser detection methods and turbulence simulation. The plan revolves around the utilization of micro electromechanical mirrors, which have had a significant impact on various scientific fields over the past two decades.MEMS reflectors have gained widespread re...

    2024-03-07
    Посмотреть перевод