Русский

The official launch of FV4000 and FV4000MPE microscopes aims to redefine scientific imaging

207
2023-11-03 14:24:48
Посмотреть перевод

Introduction to FLUOVIEW ™ The FV4000 confocal laser scanning microscope and FV4000MPE multiphoton laser scanning microscope have made breakthroughs in imaging technology, enabling researchers to make new scientific discoveries. The FV4000 and FV4000MPE microscopes aim to redefine scientific imaging, providing higher accuracy, lower noise, and higher sensitivity, setting new standards for image acquisition and data reliability.

The core of two new FLUOVIEW systems is Evident's revolutionary SilVIR ™ Detectors, a next-generation technology that enables researchers to obtain quantitative image data. With its silicon photomultiplier tube (SiPM) and patented digital signal processing technology, the SilVIR detector can provide excellent noise reduction and enhanced photon detection efficiency over a wider wavelength range, providing clearer and more accurate imaging results and quantitative image intensity data.

Excellent imaging quality and accuracy. The FV4000 and FV4000MPE microscopes use SilVIR detectors, perfectly combining sensitivity and accuracy, allowing researchers to obtain high-quality images that surpass previous generation laser scanning systems, even from weak fluorescence signals. This progress helps to ensure that images remain clear and have extremely low noise, enabling accurate quantification of fluorescence intensity to obtain more reliable data.

The updated TruSpectral technology of the system is combined with high sensitivity SilVIR detectors, allowing you to see more. Compared with traditional photomultiplier tube (PMT) detector technology, the signal-to-noise ratio and dynamic range have been improved by using SilVIR detector. The system changes the dynamic range of game rules, allowing researchers to capture images that shrink from macroscopic to subcellular structures without compromise.

The innovative near-infrared capability, with its expanded spectral range and improved multiplexing capability, enables the FV4000 system to detect industry-leading wavelengths ranging from 400 nm to 900 nm with a minimum step size of 1 nm.

The optical design of the FV4000 is optimized for near-infrared (NIR) imaging, featuring high transmittance optical elements from 400 nm to 1300 nm, modular laser combiners supporting up to 10 laser lines from 405 nm to 785 nm, and the award-winning X Line ™ Goal.

The advancement driven by artificial intelligence enhances your imaging experience with AI driven tools that reduce noise, simplify image analysis, and improve delayed imaging. TruAI noise reduction and image segmentation technology can optimize image quality and simplify data extraction, saving researchers valuable time and effort.

The improved modularity and flexibility are the same as the previous generation products, and our FLUOVIEW system is designed with flexibility and configuration suitable for your specific application. With FV4000, you can now add multi photon imaging functionality, allowing you to use the same system for two imaging modes.

Experience the revolutionary features of FLUOVIEW FV4000 and FV4000MPE microscopes, providing higher accuracy, sensitivity, and data reliability for your imaging experiments.

Source: Laser Network

Связанные рекомендации
  • An optical display technology based on mechanical optical mechanism

    The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP ...

    2024-03-12
    Посмотреть перевод
  • Developing miniaturized laser technology: This company has secured $5 million in financing

    Recently, high-performance laser supplier Skylark Lasers announced that it has raised $5 million in investment to further advance its efforts in miniaturized laser technology.Skylark Lasers is established at the center of the Scottish Photonics Cluster, focusing on the design and production of compact diode pumped solid-state (C-DPSS) lasers with the purest spectral characteristics, providing high...

    2023-11-02
    Посмотреть перевод
  • Researchers use laser doping to enhance the oxidation of IBC solar cells

    Researchers from the International Solar Research Center at Konstanz and Delft University of Technology have discovered a method to pattern the back end of a cross finger rear contact battery, improving its efficiency by making certain parts of the solar cell thicker.Researchers have developed a new technology that enhances oxidation in selected areas by patterning the back or back of IBC solar ce...

    2024-02-20
    Посмотреть перевод
  • The world's first scalable optical quantum computer prototype has been launched

    Canada's Xanadu Quantum Technologies has developed the world's first scalable optical quantum computer prototype. The company published an article in the latest issue of Nature detailing its design and construction process, and demonstrating how the prototype can be flexibly scaled up to the required scale. This breakthrough lays an important foundation for the development of large-scale quantum c...

    02-12
    Посмотреть перевод
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    Посмотреть перевод