Русский

The Japanese research team has manufactured a vertical deep ultraviolet emitting semiconductor laser device based on AlGaN, which is expected to be applied in fields such as laser processing

352
2023-10-23 14:17:29
Посмотреть перевод

Recently, a Japanese research team has developed a vertical deep ultraviolet emitting semiconductor laser device based on AlGaN, which is expected to be applied in laser processing, biotechnology, and medical fields.

As is well known, ultraviolet (UV) is an electromagnetic wave with a wavelength range of 100 to 380nm. These wavelengths can be divided into three regions: UV-A (315-380 nm), UV-B (280-315 nm), and UV-C (100-280 nm), with the latter two regions containing deep ultraviolet light.

Laser sources emitted in the ultraviolet region, such as gas lasers and solid-state lasers based on yttrium aluminum garnet laser harmonics, can be widely used in biotechnology, skin disease treatment, UV curing processes, and laser processing. However, such lasers have drawbacks such as large volume, high power consumption, limited wavelength range, and low efficiency.

In recent years, with the continuous development of manufacturing technology, the development of high-performance semiconductor lasers that generate light through injection current has been promoted. This includes ultraviolet light emitting devices based on the semiconductor material aluminum gallium nitride AlGaN. However, their maximum optical output power in the deep ultraviolet region is only about 150mW, far lower than the power required for medical and industrial applications. Increasing the injection current of the device is crucial for improving output power. This requires increasing the device size while ensuring uniform current flow in the device.

In this research context, a Japanese research team led by Professor Yuanming Iwao from the Department of Materials Science and Engineering at Nagasaki University has successfully developed a high-performance vertical AlGaN type UV-B semiconductor laser diode. The study was published in the journal Applied Physics Letters.

Professor Yanwu Yuanming once stated that existing deep ultraviolet lasers based on AlGaN utilize insulating materials such as sapphire and AlN to obtain high-quality crystals. But because current flows laterally in these devices, scientists have explored vertical devices to improve their optical output. In a p-n junction, the p-electrode and n-electrode face each other. However, in the past few years, vertical configuration has been used to achieve high-power semiconductor devices. However, in terms of semiconductor lasers, the development of this configuration has been stagnant and has not yet been achieved in deep ultraviolet light emitting devices based on aluminum nitride. To this end, researchers first manufactured high-quality aluminum nitride on a sapphire substrate. Subsequently, periodic aluminum nitride nanopillars were formed and laser structures based on aluminum nitride were deposited.

The research team utilized innovative laser peeling technology based on pulsed solid-state lasers to peel the device structure off the substrate. They also developed a semiconductor process to manufacture the electrodes, current limiting structures, and insulation layers required for laser oscillation, and developed a splitting method using blades to form excellent optical resonators. The AlGaN based deep ultraviolet B semiconductor laser diode thus manufactured has novel and unique characteristics. It can operate at room temperature, emitting extremely sharp light at a wavelength of 298.1nm, with a clear threshold current and strong transverse polarization characteristics. The researchers also observed the unique spot like far-field mode of the laser, confirming the oscillation of the device.

This study indicates that vertical devices can provide high current for the operation of high-power devices. In the future, it will play a greater role in new cost-effective manufacturing processes for electric vehicles and artificial intelligence. And researchers also hope that vertical ultraviolet lasers based on aluminum nitride can have practical applications in medical and manufacturing fields.

Source: Sohu

Связанные рекомендации
  • Topological high-order harmonic spectroscopy in Communications Physics

    It is reported that researchers from the University of Salamanca in Spain have demonstrated a high-order harmonic spectroscopy scheme generated by the interaction between a structured driving beam and a crystal solid target. This work promotes the topological analysis of high-order harmonic fields as a spectroscopic tool to reveal nonlinearity in the coupling of light and target symmetry. The rele...

    2024-01-15
    Посмотреть перевод
  • New technology can efficiently heal cracks in nickel based high-temperature alloys manufactured by laser additive manufacturing

    Recently, Professor Zhu Qiang's team from the Department of Mechanical and Energy Engineering at Southern University of Science and Technology published their latest research findings in the Journal of Materials Science. The research team has proposed a new process for liquid induced healing (LIH) laser additive manufacturing of cracks. By controlling micro remelting at grain boundaries to introdu...

    2024-03-15
    Посмотреть перевод
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    Посмотреть перевод
  • Coherent launches 12 kW sheet metal laser cutting processing head

    Recently, Coherent, an industrial laser technology giant, announced the launch of a new 2D laser cutting head - CUT12, which combines excellent performance, high versatility, and profound value for the global flat cutting market. Image source: CoherentThe CUT12 sheet metal laser cutting processing head is perfectly compatible with fiber lasers in the power range of 4 kW-12 kW (continuous wave),...

    2024-10-29
    Посмотреть перевод
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    Посмотреть перевод