Русский

Widely tunable terahertz laser enhances photo induced superconductivity in K3C60

213
2023-10-13 14:41:30
Посмотреть перевод

Researchers at the Max Planck Institute for Material Structure and Dynamics (MPSD) in Hamburg, Germany, have long been exploring the effect of using custom laser drivers to manipulate the properties of quantum materials to deviate from equilibrium states.

One of the most eye-catching demonstrations of these physics is unconventional superconductors, where enhanced electron coherence and super transport characteristics have been recorded in the resulting non equilibrium states. However, mainly due to the complexity of the experiment, these phenomena have not been systematically studied or optimized. Therefore, the application of technology is still far from reality.

In a recent experiment, the same group of researchers discovered a more effective method of using lasers to create previously observed metastable, superconducting like states in K 3C 60. The research results of the Cavalieri group are published in the journal Nature Physics.

Researchers have shown that when the laser is tuned to a specific low-frequency resonance, much lower intensity light pulses can produce the same effect at higher temperatures. The laser technology developed by the research institute is the key to this work. By adjusting the light source to 10 THz (a frequency lower than previously possible), the team successfully reproduced a long-lived superconducting state in fullerene based materials, while reducing the pulse intensity by 100 times. This light induced state can be directly observed to last for 100 picoseconds at room temperature, but its lifespan is expected to be at least 0.5 nanoseconds (nanoseconds are billionths of a second, picoseconds are trillions of a second).

Edward Rowe, a doctoral student and lead author of the Cavalieri group, said that their findings provide new clues to the potential microscopic mechanism of photo induced superconductivity: "Identification of resonance frequencies will enable theorists to understand which excitations are actually important, as there is currently no widely accepted theoretical explanation for this effect in K3C60

Rowe envisions that a light source with a higher repetition rate at a frequency of 10 THz can help maintain metastable states for a longer time: "If we can transmit each new pulse before the sample returns to its non superconducting equilibrium state, then it is possible to maintain a quasi superconducting state continuously.

Andrea Cavalleri, Director of MPSD, said: "These experiments demonstrate well how appropriate technological advancements can make many so far unrealistic phenomena feasible." He believes that two years of effort in exploring these effects will converge into future technologies. It is equally evident that a key bottleneck that needs to be addressed is the type and availability of laser sources, which should go hand in hand with these studies to promote the development of this field.

The study was conducted at the MPSD Free Electron Laser Science Center (CFEL) in Hamburg. It is supported by DFG (German Research Foundation) through the Excellence Cluster CUI: Advanced Material Imaging. The K 3 C 60 sample was prepared at the University of Parma in Italy.

Source: Laser Network

Связанные рекомендации
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    The femtosecond laser emits ultra short optical pulses with a duration of less than one picosecond, reaching the femtosecond level (1fs=10-15s). The characteristics of femtosecond laser are extremely short pulse width and high peak intensity.Ultra short pulse trains can minimize residual heat, ensure precise material processing, and minimize incidental damage. Its high peak intensity can induce no...

    2024-04-02
    Посмотреть перевод
  • Yangtze Welcomes 8th Overseas Production Site

    On August 8, local time, Jalisco, Mexico welcomed the grand opening of Yangtze Optics Mexico Cable S.A. de C.V., marking the eighth overseas production base of Yangtze Optical Fiber & Cable Co. ("Yangtze Fiber Optics") has successfully set up its eighth overseas production base in its 36-year development history, further advancing its internationalization strategy blueprint. Today, we are pr...

    2024-08-14
    Посмотреть перевод
  • Received NASA contract! Breakthrough blue light laser technology leads the space power revolution

    On May 6th, NUBURU, a leading enterprise in high-power and high brightness industrial blue laser technology, announced that the company has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to promote blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lun...

    2024-05-08
    Посмотреть перевод
  • New super-resolution microscopy imaging technology: rapid imaging of neurons

    The research group led by Wang Kai from the Center for Excellence in Brain Science and Intelligent Technology of the Chinese Academy of Sciences has published a research paper titled "Super solution imaging of fast morphological dynamics of neurons in eating animals" online in Nature Methods. The team has developed a new type of super-resolution microscopy imaging technology, which solves the two ...

    2024-12-04
    Посмотреть перевод
  • Free space nanoprinting beyond optical limitations can create 4D functional structures

    Two photon polymerization is a potential method for nanofabrication of integrated nanomaterials based on femtosecond laser technology. The challenges faced in the field of 3D nanoprinting include slow layer by layer printing speed and limited material selection due to laser material interactions.In a new report in Progress in Science, Chenqi Yi and a team of scientists in the fields of technical s...

    2023-10-09
    Посмотреть перевод