Русский

Jena Helmholtz Institute Using Air Deflection Laser Beam

493
2023-10-07 15:43:58
Посмотреть перевод

A novel method is used to deflect the laser beam using only air. The interdisciplinary research team reported in the journal Nature Photonics that invisible gratings made solely of air not only do not suffer damage from lasers, but also retain the original quality of the beam. The researchers have applied for a patent for their method.

Technology and Principles
This innovative technology utilizes sound waves to regulate the air in the area where the laser beam passes through. We generated gratings using acoustic density waves, "explained first author and doctoral student Yannick Schr ö del. DESY and students at the Jena Helmholtz Institute.

With the help of special speakers, researchers shaped patterns of dense and sparse areas in the air, forming stripe gratings. Similar to how different air densities in the Earth's atmosphere bend light, the density pattern acts as a grating that changes the direction of the laser beam.

However, compared to deflection in the Earth's atmosphere, deflecting light through diffraction gratings can more accurately control lasers, "Schroeder said. The characteristics of a grating are influenced by the frequency and intensity of sound waves (in other words, volume)

Laboratory results and potential
In the initial laboratory testing, strong infrared laser pulses could be redirected in this way, with an efficiency of 50%. According to the numerical model, efficiency should be significantly improved in the future. In the first test, scientists had to turn up the volume of special speakers.

Our mobile sound level is about 140 decibels, equivalent to the sound level of a jet engine a few meters away, "explained Christoph Heyl, a scientist at DESY and the Jena Helmholtz Institute responsible for the research project. Fortunately, we are within the ultrasonic range and our ears cannot receive it.

The team sees great potential for high-performance optical technology. In the experiment, researchers used an infrared laser pulse with a peak power of 20 gigawatts, which is equivalent to the power of approximately 2 billion LED bulbs. Lasers with this power level or even higher can be used for material processing, fusion research, or the latest particle accelerators.

Within this power range, the material characteristics of mirrors, lenses, and prisms greatly limit their use, and these optical components are easily damaged by strong laser beams in practice, "Heyl explained. In addition, the quality of the laser beam will also be affected. In contrast, we have successfully deflected the laser beam in a way that ensures quality without contact.

Further applications and insights
Scientists emphasize that the acoustic control principle of lasers in gases is not limited to the generation of gratings. It may also be transferred to other optical components, such as lenses and waveguides.

We have been considering this method for a long time and quickly realized that extreme sound levels are necessary. Initially, these seemed technically infeasible, "Haier explained. However, we did not give up and ultimately found a solution with the support of researchers from Darmstadt University of Technology and Inoson Company. Firstly, we tried our technology with ordinary air. For example, in the next step, we will also use other gases to utilize other wavelengths, optical properties, and geometric shapes.

The direct deflection of light into the ambient air has been confirmed, opening up promising applications, especially as a fast switch for high-power lasers. At present, we can only imagine the potential of non-contact light control and its extension to other applications, "Heyl explained. Modern optics is almost entirely based on the interaction between light and solid matter. Our method has opened up a new direction.

Source: Laser Network

Связанные рекомендации
  • Manz AG officially announces its application for bankruptcy restructuring

    Last month, Manz AG officially announced that the company is about to undergo bankruptcy restructuring. The board of directors of the company believes that due to insufficient liquidity and excessive debt, Manz AG intends to apply for bankruptcy proceedings in accordance with bankruptcy laws. The application is expected to be submitted in the next few days. Manz AG is headquartered in Reutlingen...

    01-07
    Посмотреть перевод
  • BLM Launches Tunable 4kW Five Axis Laser Cutting System

    Recently, the Italian laser pipe processing group BLM Group announced the launch of an LT-Free five axis laser cutting system that can be used for laser cutting and processing of any three-dimensional metal profile, including bending forming, hydraulic forming, extrusion forming, deep drawing forming, flat or stamped forming of pipe fittings or plates.This five axis laser cutting system can provid...

    2023-10-11
    Посмотреть перевод
  • BOFA launches the latest generation of high-temperature 3D printing filtration technology

    BOFA has consolidated its position as a market leader in additive manufacturing of portable smoke and particle filtration systems with the latest generation of 3D PrintPRO technology designed specifically for high-temperature processes.3D PrintPRO HT focuses on the 230V market and can filter high-temperature particles, gases, and nanoparticles emitted during polymer processing in the printing room...

    2024-04-15
    Посмотреть перевод
  • Researchers have developed a new type of frequency comb that is expected to further improve the accuracy of timing

    The chip based device, known as the frequency comb, measures the frequency of light waves with unparalleled accuracy, completely changing timing, detection of exoplanets, and high-speed optical communication.Now, scientists and collaborators from the National Institute of Standards and Technology in the United States have developed a new method for manufacturing combs, which is expected to improve...

    2024-03-15
    Посмотреть перевод
  • Breakthrough in Light Manipulation: Revealing New Finite Barrier Bound States

    Exploring the propagation and localization of waves in various media has always been a core focus of optics and acoustics. Specifically, in photonics and phononics, scientists have been dedicated to understanding and controlling the behavior of light and sound waves in periodic media.Photonic crystals have unique bandgap characteristics, providing an excellent platform for studying wave propagatio...

    2024-03-25
    Посмотреть перевод