Русский

CU Boulder's liquid scanning technology can better observe brain activity

459
2025-10-20 10:58:49
Посмотреть перевод

CU Boulder published a study in Optical Letters demonstrating a new high-speed laser guidance method for imaging applications, using a fluid scanner built around an electrowetting prism to replace traditional mechanical components.

"Most laser scanners today use mechanical mirrors to steer beams of light," said Darwin Quiroz from CU Boulder.

"Our approach replaces that with a transmissive, non-mechanical device that’s smaller, lower-power and potentially easier to scale down into miniature imaging systems."

Smaller and non-mechanical ways to scan lasers should help meet the demands of modern rapid imaging and fluorescence microscopy systems, where choices are often limited by weight, size and power requirements, noted the team.

These demands are further magnified with the growing interest in miniature microscopy for in vivo imaging of neuronal activity and stimulation.

 

 

Darwin Quiroz: new ways to understand the brain


Electrowetting optics could be an answer, using an electric field to change the curvature of a conductive liquid and so control the behavior of a laser beam at the liquid surface. This principle has been put to use in applications such as lidar, but previous work with electrowetting prisms was limited to slow scanning speeds or one-dimensional beam steering.

Transform the study of PTSD or Alzheimer's disease

The project built on previous CU Boulder studies into using such one-dimensional electrowetting scanners in a microscope, and also how to employ the same principle in an OCT platform to improve examination of the eye or the heart.

The new device involves a cylindrical glass tube 5 millimeters tall filled with two immiscible liquids, deionized water and a cyclohexane. Four individually accessible electrodes around the outside of the cylinder control the tilt of the interface between the liquids, so a laser passing through the cylinder from one fluid to the other can be deflected by different amounts when it crosses the slanted interface.

In trials, the device demonstrated two-dimensional scanning at speeds from 25 to 75 Hz when built into a two-photon laser scanning microscope. Successful imaging of 5-micron targets is a milestone toward making the devices practical for real-world imaging, noted the project.

"A big challenge was learning how to drive the device in a way that produces linear, predictable scanning without distortion," commented Quiroz. "We discovered that the prism has resonant modes like standing waves that we could actually leverage for scanning at higher speeds."

Since electrowetting prisms are compact and energy efficient, they could be integrated into miniature microscopes small enough to sit on top of a live animal's head, helping the study of brain function in living subjects.

"Imagine being able to watch brain activity in real-time while an animal runs through a maze," said Quiroz. "That’s the kind of in vivo imaging this technology could enable. It could transform how we study neurological conditions like PTSD or Alzheimer’s disease."

Source: optics.org

Связанные рекомендации
  • Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

    Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/wa...

    2024-02-21
    Посмотреть перевод
  • China University of Science and Technology proposes composite cold field 3D printing technology for liquid crystal elastomers

    Recently, Associate Professor Li Mujun from the School of Engineering Sciences and the Institute of Humanoid Robotics at the University of Science and Technology of China, together with researchers such as Professor Zhang Shiwu, has made significant progress in the field of intelligent material 3D printing. The research team proposed composite cold field 3D printing technology and successfully pre...

    02-25
    Посмотреть перевод
  • China University of Science and Technology has made significant progress in the field of pure red perovskite light-emitting diodes

    Recently, four research groups from the University of Science and Technology of China, namely Yao Hongbin, Fan Fengjia, Lin Yue, and Hu Wei, have collaborated to make significant progress in the field of pure red perovskite light-emitting diodes (LEDs). The team independently invented the Electrical Excitation Transient Spectroscopy (EETA) technology and used it to reveal that hole leakage is the ...

    05-12
    Посмотреть перевод
  • Pensievision Wins Luminate NY OPI Accelerator Competition

    New York Governor Kathy Hochul announced last week that Pensievision emerged as the winner of the eighth cohort of the Luminate NY Optics, Photonics, and Imaging (OPI) Startup Accelerator Competition. The San Diego, California-based company was honored as the “Company of the Year” at the Luminate NY 2025 Finals held in Rochester on October 22. The finals were part of SPIE Optifab, the annual confe...

    10-31
    Посмотреть перевод
  • Sweden's powerful laser system generates ultra short laser pulses

    For the first time, researchers at Umeå University, Sweden, have demonstrated the full capabilities of their large-scale laser facility. The team reports generating a combination of ultrashort laser pulses, extreme peak power, and precisely controlled waveforms that make it possible to explore the fastest processes in nature.Umeå’s laser is 11 m long and generates very short pulses László Vei...

    08-20
    Посмотреть перевод