Русский

Laser-induced graphene sensor can diagnose diabetes through breath samples

633
2025-09-08 10:14:27
Посмотреть перевод

In the U.S., one in five of the 37 million adults who has diabetes is not aware of it (according to the U.S. CDC – Centers for Disease Control & Prevention). Current methods of diagnosing diabetes and prediabetes usually require a visit to a doctor’s office or lab work, both of which can be expensive and time-consuming. Now, diagnosing diabetes and prediabetes may be as simple as breathing.

 



Diagnosing diabetes in a few minutes from just a breath sample


A research team led by Huanyu “Larry” Cheng, James L. Henderson, Jr. Memorial Associate Professor of Engineering Science and Mechanics at Penn State University, University Park, PA, has developed a sensor that can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample.

Their achievement is described in Chemical Engineering Journal.

Previous diagnostic methods often used glucose found in blood or sweat, but the new sensor detects acetone levels in the breath. While everyone’s breath contains acetone as a byproduct of burning fat, acetone levels above a threshold of about 1.8 parts per million indicate diabetes.

“While we have sensors that can detect glucose in sweat, these require that we induce sweat through exercise, chemicals or a sauna, which are not always practical or convenient,” said Cheng. “This sensor only requires that the subject exhales into a bag, then dip the sensor in and wait a few minutes for results.”

Cheng said there have been other breath analysis sensors, but they detected biomarkers that required lab analysis. Acetone can be detected and read on-site, making the new sensors cost-effective and convenient.

Laser-induced graphene

In addition to using acetone as the biomarker, Cheng said another novelty of the sensor came down to design and materials — primarily laser-induced graphene. To create this material, a CO2 laser is used to burn the carbon-containing materials, such as the polyimide film in this work, to create patterned, porous graphene with large defects desirable for sensing.

“This is similar to toasting bread to carbon black if toasted too long,” Cheng said. “By tuning the laser parameters such as power and speed, we can toast polyimide into few-layered, porous graphene form.”

The researchers used laser-induced graphene because it is highly porous, meaning it lets gas through. This quality leads to a greater chance of capturing the gas molecule, since breath exhalation contains a relatively high concentration of moisture. However, by itself, the laser-induced graphene was not selective enough of acetone over other gases and needed to be combined with zinc oxide.

“A junction formed between these two materials that allowed for greater selective detection of acetone as opposed to other molecules,” Cheng said.

Another challenge was that the sensor surface could also absorb water molecules, and because breath is humid, the water molecules could compete with the target acetone molecule. To address this, the researchers introduced a selective membrane that could block water but allow the acetone to permeate.

Cheng said that right now, the method requires a subject to breathe directly into a bag to avoid interference from factors such as airflow in the ambient environment. The next step is to improve the sensor so that it can be used directly under the nose or attached to the inside of a mask. He also plans to investigate how an acetone-detecting breath sensor could be used to optimize health initiatives for individuals.

“If we could better understand how acetone levels in the breath change with diet and exercise, in the same way we see fluctuations in glucose levels depending on when and what a person eats, it would be a very exciting opportunity to use this for health applications beyond diagnosing diabetes,” he said.

Source: optics.org

Связанные рекомендации
  • LAP launches CAD-PRO Xpert, an industrial laser projector using cutting-edge technology platforms

    LAP launched its latest version of the industrial laser projection system CAD-PRO Xpert at this year's JEC World. This innovation signifies the company's commitment to providing the most advanced laser engineering for various industries to achieve precise, efficient, and reliable laser guidance and positioning tasks, which is an important milestone.Redefining laser projection in the production pro...

    2024-03-07
    Посмотреть перевод
  • Shenzhen Guangfeng Technology may cooperate with well-known German enterprises

    Recently, Shenzhen Guangfeng Technology Co., Ltd. once again disclosed a development fixed-point notice. Unlike other fixed-point notices received this year, this fixed-point notice points to the optical components of the vehicle's dynamic color pixel lights. According to company disclosure, Guangfeng Technology recently received a development notice from a leading international brand car compan...

    2024-11-18
    Посмотреть перевод
  • Bohong has developed a new type of ultrafast laser for material processing

    Chief researcher Clara Saraceno will bring the new laser to the market with the support of ERC funding.Femtosecond lasers can be used to create high-precision microstructures, such as those required for smartphone displays and various automotive technology applications.Professor Clara Saraceno from Ruhr University in Bochum, Germany is committed to developing and introducing cheaper and more effic...

    2023-08-22
    Посмотреть перевод
  • BOFA launches the latest generation of high-temperature 3D printing filtration technology

    BOFA has consolidated its position as a market leader in additive manufacturing of portable smoke and particle filtration systems with the latest generation of 3D PrintPRO technology designed specifically for high-temperature processes.3D PrintPRO HT focuses on the 230V market and can filter high-temperature particles, gases, and nanoparticles emitted during polymer processing in the printing room...

    2024-04-15
    Посмотреть перевод
  • Laser Wire Solutions and HumanTek Jointly Enter the Korean Laser Wire Stripping Market

    Recently, Laser Wire Solutions officially welcomed its important distribution partner in South Korea - HumanTek. This cooperation marks the official establishment of HumanTek as a branch of Laser Wire Solutions in Korea, and both parties will work together to provide excellent services for the Korean laser wire stripping market.HumanTek, with its deep foundation in the Korean market and strong pro...

    2024-07-03
    Посмотреть перевод