Русский

SPIE Optics and Photonics 2025: Plenary Session Evaluation of Organic Materials for Optoelectronics

700
2025-08-06 16:23:18
Посмотреть перевод

The use of organic materials in photonics has given rise to many device innovations for applications in sensing, semiconductors, lasers, and more. The Organic Photonics + Electronics plenary session at SPIE Optics + Photonics 2025, taking place through 7 August in San Diego, California, sampled some current research efforts in this subfield, and looked at developments on the horizon.


Ruth Shinar delivers her plenary talk


Triplet-to-singlet upconversion

The first speaker,Chihaya Adachi—a professor at Kyushu University and one of the world’s leading researchers on OLEDs—discussed recent advances in organic photonics, focusing on triplet-to-singlet upconversion mechanisms, and the need for improvements in blue emitters for commercial uses. He discussed thermoluminescent dosimeter (TLD) optimization for higher performance and longer device lifetimes, as well as the potential for these materials in, for example, organic solar cells.

Adachi’s presentation also introduced the concept of organic thermoelectric devices using a p-n junction to generate holes and electrons. The device architecture, he said, includes a charge generation layer and a transport layer. Experiments under dark conditions show small “quite promising,” measurable thermoelectric behavior, indicating potential applications for things like power-generation textiles and smart contact lenses.

Organic photodetectors and OLEDs

Outgoing symposium chair, Zakya H. Kafafi of Lehigh University, introduced the next speaker, Ruth Shinar of Iowa State University of Science and Technology. Kafafi noted, “I am Egyptian by birth and American by choice,” whereas Shinar and her spouse are originally from Israel. “So, these are two of my friends and colleagues I have worked with for many, many years,” she said, “and it’s an example of science without borders.”

Shinar’s presentation included an overview of organic photodetectors (OPD) and OLEDs in devices like sensors, spectrometers-on-a-chip, and devices that could also incorporate microfluidic channels. She noted their current use and potential future in optical sensing devices, including devices that are compact, field deployable, and wearable, and suited for applications that range from environmental monitoring to medical diagnostics.

“The big question, of course, is why OLEDs?” Shinar said. The answer: “The devices can be made on almost every substrate you can think of,” including plastics that are bendable and stretchable.”

Inkjet printing of opto-electronic devices

The third speaker for the organic photonics and electronics plenary was Emil J.W. List-Kratochvil of Humboldt University, who spoke about the evolution of his work with ink-jet printing technology and its ongoing promise for optoelectronic devices, including light-emitting devices and solar cells.

As an additive technology, he said, ink-jet printers allow for rapid prototyping and hybrid integration of components, though he cautioned against trying to print everything on a device so as to avoid printing components whose requirements would be too time consuming. “We have shown that heterogenous, homogenous integration is the way to go.”

List-Kratochvil discussed the various inks developed for printing opto-electronic devices, including metal halides and perovskites. Today’s challenges, he said, include printing layers of different inks which require precise timing of deposition and drying so that new layers do not disrupt those already set down on the substrate.

Current and future directions for research, he said, include combining printing with automated testing, integrating printed solar cells, and scaling print size. Finally, he mentioned printing of RGB devices, noting challenges in achieving high-performance in blue-emitting perovskites.

Source: optics.org

Связанные рекомендации
  • DLR and Tesat laser terminals pave the way for high-speed data transmission from space

    Due to the surge in the deployment of small satellites, the increasing congestion of data transmission has always been a persistent problem in the aerospace industry. The collaboration between the Communication and Navigation Research Institute of the German Aerospace Center and Tesat Spacecom GmbH and Co. KG TESAT provides a powerful solution. They successfully developed and tested OSIRIS4CubeSat...

    2023-11-02
    Посмотреть перевод
  • Additive Manufacturing Software Market 2025: Analysis, Data, and Forecasting

    In March 2025, Additive Manufacturing Research (AMR) released its latest 3D printing market research report, "AM Software Markets 2025: Analysis, Data, and Forecast," which provides a comprehensive and in-depth analysis of the 3D printing software industry. The latest research findings indicate that global revenue from additive manufacturing (AM) software is expected to grow from $2.44 billion in ...

    03-17
    Посмотреть перевод
  • Research on High Strength and High Toughness TC11 Titanium Alloy with Multi Laser Coaxial Wire Feeding and Directed Energy Deposition

    Researchers from Huazhong University of Science and Technology, AVIC Xi'an Aircraft Design and Research Institute, AVIC Xi'an Aircraft Industry Group Co., Ltd., Shanghai Aerospace Equipment Manufacturing General Factory Co., Ltd., State Key Laboratory of Aircraft Control Integration Technology, Beijing Xinghang Electromechanical Equipment Co., Ltd. and Nanjing Yingigma Automation Co., Ltd. reporte...

    05-14
    Посмотреть перевод
  • Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

    Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manu...

    2023-08-21
    Посмотреть перевод
  • Overview: High throughput preparation of alloy composition design in additive manufacturing

    Researchers from the New Materials Technology Research Institute of Beijing University of Science and Technology and the Beijing Modern Transportation Metal Materials and Processing Laboratory reported a review of high-throughput preparation of alloy composition design in additive manufacturing. The relevant research is titled "High throughput preparation for alloy composition design in additive m...

    2024-07-08
    Посмотреть перевод