Русский

Ireland's first biological Brillouin microscope at Trinity College Dublin

467
2025-07-14 11:06:42
Посмотреть перевод

A project at Trinity College Dublin is now hosting Ireland's first BioBrillouin microscope instrument, applying Brillouin spectroscopy to life sciences and medicine.
This should in particular enhance the College's research into cellular and tissue mechanics for the study of inflammation, cancer, and developmental biology.

Brillouin microscopy offers a route to optical investigation of a biological sample's mechanical and viscoelastic properties, via the phenomenon termed Brillouin light scattering (BLS).

 



Tissue analysis at Trinity College Dublin


This occurs when photons traveling through matter interact with phonons, compressive waves created in the same matter by external stimulus or compression - effectively a change in density caused by an acoustic wave.

Brillouin spectroscopy has already been put to use probing cell dynamics and testing the mechanical properties of tumors, yielding data about cells' physical properties than can be hard to obtain otherwise.

The ability to map and quantify the compressibility, viscoelasticity and the detailed mechanics of materials and biological tissues non-invasively enables researchers to assess the mechanical properties of live systems without interfering with them, monitoring a system and how it changes over time.

Working alongside instrument vendors CellSense Technologies, the Dublin project hopes to expand the application of BLS to a wider range of biological systems, exploiting how cellular and tissue mechanics can be potent regulators of cell disease, dysfunction and regeneration.

Clinical translation in ophthalmology

To that end the team at the Trinity Centre for Biomedical Engineering has also contributed to a new consensus report on Brillouin light scattering microscopy applied to biological materials, published in Nature Photonics.

The report is intended to improve the comparability of BLS studies by providing reporting recommendations for the measured parameters and detailing common artifacts. Given that most BLS studies of biological matter are still at proof-of-concept stages and use different, often self-built, spectrometers, a consensus statement is particularly timely to ensure unified advancement, noted the authors.

"Regardless of the field's trajectory, it is currently in a serendipitous position," noted the report. "While BLS is still in its infancy in regard to clinical translation, one area where it has transitioned to clinical applications is that of ophthalmology. Here it is used to identify the severity of pathologies such as keratoconus associated with spatial changes in corneal biomechanics."

The Trinity College Dublin team predicts that studying the mechanical properties of live systems will enable leaps forward in the understanding of how inflammation and cancer develop.

"However, it’s also important to understand its use is not limited to biomedical research and related applications," commented Michael Monaghan from the School of Engineering at Trinity. "It will help scientists push boundaries in fields such as materials science, ICT, energy storage, pharmaceuticals, and medical devices and diagnostics."

Source: optics.org

Связанные рекомендации
  • Redefining optical limits: Engineers discover enhanced nonlinear optical properties in 2D materials

    Recently, according to a paper published in Nature Communications titled "Phonoenhanced nonlinearities in hexagonal boron nitride," engineers from Columbia University collaborated with theoretical experts from the Max Planck Institute of Material Structure and Dynamics to discover that pairing lasers with lattice vibrations can improve the nonlinear optical properties of layered two-dimensional ma...

    2024-02-23
    Посмотреть перевод
  • Frankfurt Laser Company launches a new high-power fiber coupled laser diode

    The global leader in laser technology solutions, Frankfurt Laser, has launched a new series of high-power fiber coupled laser diodes, setting a new standard in the laser industry. The innovative 9XXnm high-power fiber coupled laser diode aims to optimize fiber laser pump source applications, providing unparalleled efficiency, compactness, and brightness.The New Era of Laser TechnologyThe latest pr...

    2024-05-13
    Посмотреть перевод
  • The Trends and Challenges of the Metal 3D Printing Industry in 2025

    In the past decade, metal 3D printing technology has experienced rapid development, from the initial production of orthopedic implants to the manufacturing of rocket boosters. This technology has become an indispensable part of multiple key industries. With the advancement of technology and the expansion of the market, we are witnessing the revival of electron beam melting (EBM) technology and the...

    01-21
    Посмотреть перевод
  • Chinese researchers enhance perovskite lasers by suppressing energy loss

    Limiting Auger recombination enables “record” quasi-continuous wave laser output.For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that...

    08-25
    Посмотреть перевод
  • Munich Shanghai Light Expo and Light Academic Publishing Center further strengthen cooperation

    In November 2024, based on the mutual trust and cooperation over the past years, the Munich Shanghai Optical Expo and the Light Academic Publishing Center of the Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences (hereinafter referred to as the "Light Center") reached a consensus on further strategic development as they ushered in the year of disruptive sci...

    2024-12-05
    Посмотреть перевод