Русский

The UK government plans £ 10.5 million to support laser wire feeding

423
2025-06-23 10:46:00
Посмотреть перевод

On the first day of the 2025 Paris Air Show, the UK government announced a £ 250 million investment to support sustainable aerospace programs, with £ 48.5 million earmarked for funding additive manufacturing projects led by Airbus and GKN Aerospace. Among them, £ 10.5 million will be injected into the GKN Integrated System Level Aerospace Structure Assembly (ISLAA) program, with the aim of utilizing Laser Wire Feed Additive Manufacturing (WLAM) technology to advance large-scale aerospace production.

It is reported that GKN Aviation will use funds to promote the application of laser wire feeding additive manufacturing technology in aircraft structural integration, and simultaneously announce a new cooperation with electric vertical takeoff and landing (eVTOL) manufacturer Archer Aviation to provide key fuselage components and low-voltage electrical interconnection systems for its Midnight air taxi.


Parts printed using GKN's laser wire feeding additive technology


Application of GKN's WLAM technology in the manufacturing of large aerospace components
Laser wire feeding additive manufacturing technology (WLAM) is a 3D printing process that uses laser melting of metal wire materials layer by layer to form. It has advantages such as high material utilization, fast deposition rate, no dust pollution, support for multiple materials, and large-scale manufacturing. For many years, GKN Aerospace has been at the forefront of the application of laser wire feeding additive manufacturing technology, committed to applying this technology to the manufacturing of large aerospace components.

1. Announce the delivery of the 200th additive manufactured fan housing installation ring
GKN Aviation announced the delivery of the 200th additive manufactured fan housing mounting ring. GKN began using laser wire feeding additive technology to produce large fan casing installation rings in 2024, and completed the production of its 100th piece in November of the same year. The acceleration of production speed reflects the operational efficiency of laser wire feeding additive manufacturing, which can meet the demanding requirements of modern aviation and produce lightweight, sturdy, and highly optimized components.

 



2. GKN uses laser wire feeding additive technology to assist aerospace manufacturing
GKN Airlines uses laser wire feeding additive technology to manufacture cutting-edge components, which have been applied to the world's leading aviation engines and have begun mass production, achieving a 40% reduction in component manufacturing emissions, a 40% reduction in raw material losses, an 80% reduction in delivery cycles, and promoting global capacity upgrades.

3. GKN collaborates with renowned aircraft manufacturers to produce large titanium alloy aviation structural components
GKN Airlines has partnered with aircraft manufacturer Northrop Grumman to use laser wire feeding additive manufacturing technology to manufacture a titanium metal aerospace structural component with a size of approximately 2.5 meters using about 45 kilograms of titanium. It is said to be the largest additive manufacturing aerospace structural component produced by GKN Aerospace.

Source: Yangtze River Delta G60 Laser Alliance

Связанные рекомендации
  • Juguang Technology launches miniaturized high-power semiconductor laser stack GS09 and GA03

    In today's technology field, Juguang Technology released two highly anticipated high-power semiconductor lasers on December 13th: GS09 and GA03. These two products are leading the innovation wave in the laser industry with their miniaturized design, excellent thermal management capabilities, and extensive customization flexibility.GS09 revolutionizes chip spacing by compressing the width of the st...

    2023-12-15
    Посмотреть перевод
  • Researchers have discovered new multiphoton effects in quantum interference of light

    An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research."We have demonstrated through experiments that the interference eff...

    2024-01-24
    Посмотреть перевод
  • Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

    Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.Solar panels have always been praised for their recyclability. However, the thin plast...

    2024-04-30
    Посмотреть перевод
  • TRUMPF will launch a fully automatic laser drilling machine for interconnected manufacturing equipped with a 6-kilowatt fiber laser

    TRUMPF introduced its TruMatic 5000 manufacturing unit and new SheetMaster automatic loading and unloading device technology at the 2023 Blechexpo Metal Plate Processing Exhibition in Stuttgart, Germany.Users of the new system will benefit from fully automatic laser cutting, punching, and forming capabilities. The new SheetMaster device can achieve fully automated material flow within the manufact...

    2023-10-23
    Посмотреть перевод
  • A new method for generating controllable optical pulse pairs using a single fiber laser

    Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechani...

    2024-01-15
    Посмотреть перевод