Русский

New machine learning algorithm accurately decodes molecular optical 'fingerprints'

1012
2025-05-09 10:57:00
Посмотреть перевод

Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant paper was published in the latest issue of the journal Nano.

The research team stated that the core breakthrough of this technology lies in teaching computers to recognize unique "fingerprints" generated by the interaction between molecules or materials and light. With the help of this technology, in the future, doctors may be able to capture early signals of Alzheimer's disease by simply shining light on a drop of liquid or tissue sample.

PSE-LR not only has the ability to distinguish autumn hair, but also has the interpretability of being open and honest. Unlike other "black box" machine learning models, it can generate clear "feature importance maps" that accurately highlight key spectral segments, making diagnostic results reliable, interpretable, traceable, and easy to verify.

Compared with other machine learning models, PSE-LR shows superior performance, especially in identifying subtle or overlapping spectral features. In addition, in the subsequent series of validation experiments, the performance of the algorithm was also commendable, including the successful detection of the trace presence of COVID-19 spike protein in the liquid, the accurate identification of neuroprotective components in mouse brain tissue, the effective differentiation of microscopic spectral differences in Alzheimer's disease samples, and the identification of the unique optical characteristics of two-dimensional semiconductor materials.

Source: Opticsky

Связанные рекомендации
  • Stratasys Ltd. receives a $120 million investment from Fortissimo Capital

    It is reported that Stratasys Ltd. (NASDAQ: SSYS) announced on February 2nd that it has received a $120 million investment from Fortissimo Capital, an Israeli private equity firm. This transaction directly purchases 11.65 million newly issued shares at a price of $10.30 per share, representing a premium of 10.6% compared to the company's closing price on January 31, 2025. As of press time, it has ...

    02-05
    Посмотреть перевод
  • Advanced optical giant Schott announces completion of Malaysia factory

    Recently, German optical giant SCHOTT is pleased to announce that its advanced production plant located in Gulim, Kedah, Malaysia has been successfully completed. This milestone event was celebrated with the joint witness of employees, clients, and representatives from the Malaysian Investment Development Authority (MIDA).The completion of the new factory marks a significant increase in Schott's...

    2024-10-16
    Посмотреть перевод
  • Innovative nanoparticle analysis: achieving breakthrough 3D imaging using X-ray lasers

    The latest progress in X-ray laser technology has opened up a new era of nanoscale exploration, bringing unprecedented opportunities for materials science and nanotechnology. Researchers have developed a novel imaging technique that can directly visualize separated nanosamples in free flight, capturing their complex structures with stunning details. This breakthrough method relies on single cohere...

    2024-03-05
    Посмотреть перевод
  • Dalian Institute of Chemical Physics has made progress in the interdisciplinary field of photochemistry and photophysics

    Recently, the team led by Wu Kaifeng, a researcher at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, and Zhu Jingyi, an associate researcher, has made progress in the interdisciplinary field of photochemistry and photophysics. The team directly observed the quantum coherence properties of hybrid free radical pairs composed of quantum dots and organic molecules, achieving ef...

    01-09
    Посмотреть перевод
  • Overview: High throughput preparation of alloy composition design in additive manufacturing

    Researchers from the New Materials Technology Research Institute of Beijing University of Science and Technology and the Beijing Modern Transportation Metal Materials and Processing Laboratory reported a review of high-throughput preparation of alloy composition design in additive manufacturing. The relevant research is titled "High throughput preparation for alloy composition design in additive m...

    2024-07-08
    Посмотреть перевод