Русский

Laser surface treatment of Ti6Al4V alloy: finite element prediction of melt pool morphology and microstructure evolution

1069
2025-04-10 11:08:27
Посмотреть перевод

Researchers from the University of Calabria, University of Salento, and LUM University in Italy have reported on the progress of finite element prediction research on laser surface treatment of Ti6Al4V alloy: melt pool morphology and microstructure evolution. The related research was published in The International Journal of Advanced Manufacturing Technology under the title "Laser surface treatment of Ti6Al4V alloy: finite element analysis for predicting mole pool geometry and microstructure modifications".

This study systematically investigated the effect of laser surface treatment on Ti6Al4V titanium alloy through a combination of experiments and finite element analysis. The experiment used a fixed pulse frequency and average power, and process parameters with varying laser scanning speeds (30, 45, and 60 mm/s). The heat exchange coefficient of the numerical model was calibrated by real-time monitoring of the temperature field. Metallographic analysis shows a significant increase in hardness in the remelted zone, and X-ray diffraction confirms the formation of α - phase martensite (particularly evident during low-speed scanning). After experimental data calibration, the established 3D finite element model can accurately predict geometric features such as melt pool width and depth, and effectively characterize the influence mechanism of laser treatment on microstructure and mechanical properties. Research has shown that scanning speed is a key parameter in regulating the size of the melt pool and the behavior of phase transformation, which can significantly improve the hardness and wear resistance of alloys.


Figure 1 Metallographic analysis of laser treated surface cross-section (scanning speed 45mm/s)


Figure 2 Finite Element Modeling: Trajectory of Heat Source Movement and Subsurface Heat Field Distribution in the Cross Section of the Workpiece


Figure 3a) Gaussian heat source model b) DEFORM heat exchange window c) Calibration of heat source model parameters metallographic (30mm/s)


Figure 4 Calibration process for trial and error of heat exchange coefficient


Figure 5 Numerical simulation and experimental verification of laser surface heat treatment (45mm/s)

 


Figure 6 Finite element prediction of molten pool morphology (45mm/s)


Figure 7 Temperature gradient and remelting layer prediction (60mm/s)


Figure 8 XRD phase analysis (60mm/s)


Figure 9 Finite Element Thermal Gradient Prediction

 


Figure 10 Experimental simulation comparison of geometric dimensions of molten pool and prediction of remelted layer

 


Figure 11: The Influence of Scanning Speed on the Geometric Dimensions of the Molten Pool


This study comprehensively explores the effect of laser surface treatment on Ti6Al4V titanium alloy, with a focus on the influence of different laser scanning speeds on the microstructure and mechanical properties of the treated surface. This study reveals the regulatory mechanism of laser scanning speed on the surface microstructure and mechanical properties of Ti6Al4V titanium alloy:

1. Control of melt pool morphology: When the scanning speed increases from 30 to 60 mm/s, the melt depth decreases by about 65%, the melt width decreases by 30%, and the thickness of the remelted layer changes relatively smoothly. This is attributed to the fact that high-speed scanning shortens the laser material interaction time and limits energy input.

2. Hardness strengthening mechanism: The nano hardness in the remelted zone is increased by 24-30% compared to the matrix, and XRD confirms that the formation of α - phase martensite is the main cause. The supersaturated phase originates from the high-temperature quenching characteristics of laser treatment, and the surface Ti oxide layer further strengthens the hardening effect.

3. Model validation: The finite element model based on SFTC DEFORM-3D is highly consistent with experimental data in predicting the geometric dimensions of the melt pool, melt depth, and remelted layer thickness, successfully reproducing the temperature gradient and phase transformation behavior during the processing.

The experimental numerical joint analysis method established in this study provides a reliable tool for optimizing laser surface treatment processes, which helps to improve the mechanical properties and corrosion resistance of Ti6Al4V alloy in industrial applications. The research results have deepened the understanding of laser surface modification technology and have guiding significance for improving the performance of titanium alloy components in aerospace, biomedicine and other fields.

Source: Yangtze River Delta Laser Alliance

Связанные рекомендации
  • A professor from Sun Yat sen University proposes a new clean energy technology for laser manufacturing

    Energy conversion technology is an important research direction in modern science and engineering. Scientists are exploring new catalytic chemical methods to achieve the conversion of energy chemicals, such as photocatalysis and electrocatalysis. However, these highly anticipated catalytic chemistry technologies still have some problems in practical applications, and there is still a certain dista...

    2024-06-13
    Посмотреть перевод
  • New technology can efficiently heal cracks in nickel based high-temperature alloys manufactured by laser additive manufacturing

    Recently, Professor Zhu Qiang's team from the Department of Mechanical and Energy Engineering at Southern University of Science and Technology published their latest research findings in the Journal of Materials Science. The research team has proposed a new process for liquid induced healing (LIH) laser additive manufacturing of cracks. By controlling micro remelting at grain boundaries to introdu...

    2024-03-15
    Посмотреть перевод
  • Significant breakthrough in intelligent spectral environment perception research at Xi'an Institute of Optics and Fine Mechanics

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in the field of intelligent spectral environmental perception. Relevant research results have been published in the top journal in the field of environmental science, Environmental Science&Technology (Nature Index, 5-Year IF: 11.7), and have been selected as cover papers....

    03-20
    Посмотреть перевод
  • Researchers have made breakthrough discoveries in the field of nanophotonics

    Researchers have made breakthrough discoveries in the field of nanophotonics. They have successfully developed a locked mode ultrafast laser using lithium niobium, a material known for its excellent optical properties. This breakthrough opens up new possibilities for revolutionary applications, including telecommunications, data storage, and ultra fast imaging.A mode-locked laser is a type of lase...

    2023-11-20
    Посмотреть перевод
  • A Large Angle Color Holographic 3D Display System Based on Color LCD Grating

    Holographic display technology provides the ultimate solution for true 3D display, with enormous potential in augmented reality and virtual reality. However, the color and viewing angle of holographic 3D displays mainly depend on the wavelength of the laser and the pixel size of the current spatial light modulator. The inevitable color difference and narrow viewing angle in conventional systems se...

    2024-01-24
    Посмотреть перевод