Русский

Shanghai Institute of Optics and Fine Mechanics has made significant breakthroughs in the study of laser damage performance of mid infrared anti reflective coatings

974
2025-04-07 17:28:35
Посмотреть перевод

Recently, the Thin Film Optics Research and Development Center of the High Power Laser Component Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, collaborated with researchers from Hunan University and Shanghai University of Technology to make new progress in the study of laser damage performance of mid infrared anti reflective coatings. The research team has developed a 6-layer mid infrared double-sided anti reflective film based on HfO2/SiO2 material on a quartz substrate by optimizing the preparation process, with a laser-induced damage threshold (LIDT) of 91.91 J/cm;. The related achievements were published in Infrared Physics&Technology under the title "The performance of laser induced damage of a 2-4 μ m mid frared anti reflective coating based on HfO2/SiO2 materials".

The surface reflection loss of infrared optical components is significant, and anti reflective films have become the key to improving device efficiency. Traditional infrared anti reflective film materials (such as fluoride and sulfide) have problems such as insufficient stability and easy water absorption, while oxide materials (such as HfO2/SiO2) have become a research hotspot due to their high melting point, high environmental stability, and high LIDT.


Figure 1 (a) Transmittance of the anti reflective film (b) Reflectance of the anti reflective film (c) LIDT test of the anti reflective film


A 6-layer HfO2/SiO2 film system structure with a total thickness of 2180nm was designed using electron beam evaporation (EB) and ion assisted deposition (EB-IAD) techniques. By comparing the two processes, it was found that ion assisted technology significantly optimized the quality of the film layer, and the EB-IAD process prepared the film layer with higher crystallinity, lower surface roughness, and significantly reduced water absorption. The laser damage threshold is increased, and the LIDT of EB-IAD anti reflective film under 2.097 μ m laser reaches 91.91 J/cm2, while the EB process only achieves 11.25 J/cm;. After analyzing the damage morphology, it was found that the EB anti reflective film was affected by the nanosecond thermal effect, resulting in larger and deeper damage points. The EB-IAD film layer was mainly ablated by plasma, with a smaller damage area and stronger interfacial adhesion. This study provides theoretical basis and process reference for the design and preparation of mid infrared anti reflective films. The research results are expected to be applied to the mid infrared nonlinear crystal ZnGeP2 and more mid infrared laser systems besides ZnGeP2 crystals, such as high-power laser processing, infrared imaging, optical communication and other fields, promoting the development of related industries.

Source: opticsky

Связанные рекомендации
  • Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

    Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals int...

    2024-01-09
    Посмотреть перевод
  • Marvel Fusion received an additional € 50 million in Series B funding

    Recently, Marvel Fusion, which focuses on developing laser fusion energy systems, announced that the company has received an additional € 50 million in Series B funding. This latest investment is provided by EQT Venture Capital and Siemens Energy, and is also the first investment of the European Innovation Council (EIC) fund in fusion energy. In addition to the 63 million euros investment announce...

    04-08
    Посмотреть перевод
  • The acoustooptic modulation of gigawatt level laser pulses in ambient air can be applied to other optical components such as lenses and waveguides

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam.The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale las...

    2023-10-12
    Посмотреть перевод
  • Phil Energy from South Korea wins mysterious order from European battery manufacturer

    Recently, Phil Energy, a South Korean secondary battery equipment manufacturer, successfully won an order from a European battery manufacturer to manufacture the next generation 46 series cylindrical battery manufacturing equipment. At present, both parties have signed a supply agreement for this cooperation, but have not disclosed the customer name and order size to the public. It is understood...

    2024-07-25
    Посмотреть перевод
  • Tunoptix makes breakthrough progress in meta optical platform

    Tunoptix, a developer of computational meta-optics, based in Seattle, WA, has made what it calls “a breakthrough in mobile-scale spectral imaging”. The company’s latest meta-optical platform captures high-fidelity spectral signatures across the visible-to-NIR spectrum in a compact form factor smaller than 1 cm3, consuming less than 500 mW, and operating at real-time frame rates.Tunoptix’s ultra-c...

    07-02
    Посмотреть перевод