Português

China University of Science and Technology proposes composite cold field 3D printing technology for liquid crystal elastomers

515
2025-02-25 14:49:16
Ver tradução

Recently, Associate Professor Li Mujun from the School of Engineering Sciences and the Institute of Humanoid Robotics at the University of Science and Technology of China, together with researchers such as Professor Zhang Shiwu, has made significant progress in the field of intelligent material 3D printing. The research team proposed composite cold field 3D printing technology and successfully prepared near ambient temperature responsive liquid crystal elastomers (NAT LCEs) with high orientation sequence parameters and multivariate deformation capabilities. Based on this, an intelligent wristband system with significantly improved heart rate monitoring accuracy was developed. The results were published in the journal ACS Nano under the title "3D Printing of Near Adaptive Responsive Liquid Crystal Elastomers with Enhanced Nematic Order and Pluralized Transformation".

Liquid crystal elastomers, as a new type of intelligent material, have important application value in the fields of soft robots, biomedical devices, and wearable electronics. Traditional liquid crystal elastomers face bottlenecks such as high response temperature (>70 ℃) and limited programmability in manufacturing processes, which severely restrict their practical applications. The development of a new type of liquid crystal elastomer with near ambient temperature response characteristics and precision machining has become a key scientific problem that urgently needs to be overcome in this field. In response to this issue, the research team innovatively proposed a "low-temperature nozzle+cooling platform" composite cold field collaborative control strategy, achieving multiple technological breakthroughs: 1. Precise control of liquid crystal element orientation: maintaining high ink viscosity through a 5 ℃ low-temperature printing environment, inducing highly oriented alignment of liquid crystal elements through shear force, and increasing the orientation sequence parameters by more than 30 times compared to traditional room temperature printing methods. 2. Multivariate deformation programming: achieving reversible deformation of complex structures such as saddles, cones, and English letters. 3. Biocompatible applications: The material responds to temperature and adapts to the human tolerance range, successfully developing an intelligent heart rate monitoring wristband system that can actively adhere to the skin.

 



Figure 1. Schematic diagram of the working principle of the composite cold field 3D printing system


The structure printed in this study exhibits good environmental adaptability: the disk sample spontaneously forms a saddle shape at room temperature, with an increase in curvature at 10 ℃ and a conical shape at 60 ℃. Gradient programming is achieved through dynamic temperature control, and precise curling deformation is achieved through layered temperature control programming for structures such as "USTC" letters. The research team also explored the application of this technology in the field of precision medicine. The liquid crystal elastic wristband with integrated liquid metal circuit actively adheres to the wrist under PID temperature control, significantly improving measurement accuracy and reducing noise. The performance of 1000 fatigue tests remains unchanged, promoting the development of soft robotics technology, biomedical instruments, and wearable electronic devices.

 



Figure 2. Programmable Multivariate Deformation Display and Application


Li Dongxiao, a master's student in the Department of Precision Machinery and Precision Instruments at the University of Science and Technology of China, and Sun Yuxuan, a postdoctoral fellow, are co first authors of the paper. Associate Professor Li Mujun, Professor Zhang Shiwu, and Postdoctoral Fellow Sun Yuxuan are co corresponding authors. Professor Pan Tingrui from the Suzhou Institute of Advanced Study at the University of Science and Technology of China and Professor Li Weihua from the University of Wollongong in Australia are co authors of the paper. This research has received support from the National Key Research and Development Program of the Ministry of Science and Technology, the Natural Science Foundation of Anhui Province, and the Joint Fund of "New Medicine of University of Science and Technology of China". Some experiments have received support from platforms such as the Micro Nano Research and Manufacturing Center of the University of Science and Technology of China and the Physical and Chemical Science Experimental Center of the University of Science and Technology of China.

Source: opticsky

Recomendações relacionadas
  • Hymson acquires Leister Laser's plastic welding business, further advancing its globalization strategy

    On February 27th, Hymson and Leister Group successfully signed a strategic acquisition agreement, announcing the wholly-owned acquisition of the laser plastic welding business of Leister Group.On the same day, the two parties held a grand signing ceremony in Switzerland, which was attended by Mr. Zhao Shengyu, Chairman and General Manager of Hymson, Mr. Chen Jiewei, Director and CEO of Hymson, Mr....

    03-11
    Ver tradução
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    Ver tradução
  • Laser photonics helps simplify maintenance processes in the mining industry

    Laser Photonics Corporation (LPC) is a leading global developer of industrial laser systems for cleaning and other material processing applications, emphasizing the critical applications of its industrial laser cleaning systems in the mining industry.Laser Photonics provides a user-friendly, ethical, cost-effective, and time-saving solution for professionals in the mining industry to maintain heav...

    2024-06-14
    Ver tradução
  • Photovoltaic converters for power transmission systems

    Scientists from the University of Hahn in Spain and the University of Santiago de Compostela conducted research to determine the most suitable semiconductor materials for high-power light transmission in terrestrial and underwater environments.HPOT, also known as laser power transfer, is a method of transmitting continuous power to a remote system using a monochromatic light source through an opti...

    2023-12-29
    Ver tradução
  • Statsndata predicts that the light detection and ranging market will experience vigorous development globally in 2029

    The Light Detection and Ranging (LiDAR) market embodies the technology of remote sensing, surveying, and the use of laser pulses to measure distance and generate detailed three-dimensional models of objects, terrain, and environment.The LiDAR system emits a laser beam and measures the time required for the light to return to the surface, creating accurate and high-resolution digital representation...

    2023-08-31
    Ver tradução