Português

Aerotech's next-generation laser processing technology for medical device manufacturing

215
2025-02-08 16:06:04
Ver tradução

Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the ultimate cylindrical laser machining motion platform LaserTurn160. LaserTurn160 is designed for unparalleled precision and efficiency, with a 40% increase in production capacity compared to similar systems, setting a new standard for medical device manufacturing.

 



Extremely high efficiency, unparalleled precision
LaserTurn160 has been optimized for high dynamic performance, providing precise motion trajectories to ensure consistent and high-quality manufacturing results. Its multifunctional features can meet the unique requirements of medical device production, stent cutting, catheter manufacturing, guidewire manufacturing, and other applications.

Unparalleled performance
The direct drive motor and cross roller bearings of LaserTurn160 ensure ultra smooth motion, enabling the production of highly repeatable components. When used in conjunction with the powerful Automation 1 motion controller, users can achieve an ideal balance of precision and speed when processing cardiovascular stents or other complex tubular components.

LaserTurn160 has established a new industry standard Aerotech product manager Brian Fink said. This platform can significantly increase production while maintaining excellent part quality, making it a revolutionary force in high-precision medical applications such as stent cutting and subsea tube manufacturing, where process yield and part repeatability are crucial.

Main features and advantages:
Excellent production capacity: Improve process efficiency by 40% or more, reduce production time, increase output, while achieving excellent part quality and repeatability.

Dynamic Rotating Axis: Provides two options for direct drive rotating tables. ASR1300 provides extremely high dynamic performance for pipes with a diameter of up to 4 millimeters, with speeds up to 3000 rpm and accelerations up to 8000 rad/s2. CCS130DR is capable of handling pipes with a diameter of up to 7.9 millimeters, combining high dynamism and versatility.

Precision workpiece clamping: When the pipe passes through the aperture of the rotating table, a fixed length pneumatic chuck can almost eliminate unnecessary pipe movement during clamping and re clamping processes.

Enhance flexibility: Compatible with D-type clamps and optional alignment clamps, it can seamlessly handle pipes of different lengths and diameters.

Seamless integration: compatible with D-type clamps and optional alignment grippers, it can easily and accurately handle materials, and the front and rear tool boards simplify the integration of bushings and other process equipment. LaserTurn160 also supports wet and dry cutting configurations to achieve maximum process versatility.

About Aerotech
Since 1970, Aerotech Inc. has been a global industry leader in precision motion control and automation. From standard positioning technology and control systems to custom designed automation systems, we provide support for global research and industrial organizations. Aerotech solutions provide manufacturing, testing, and inspection processes at the micrometer and nanometer levels for the world's most renowned technology companies in industries such as aerospace, consumer electronics, and medical equipment.

Source: Aerotech

Recomendações relacionadas
  • Shanghai Optics and Machinery Institute has made progress in the development of picosecond reflectors based on composite materials

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made progress in the research of picosecond reflectors based on composite materials. The relevant research results are titled "Hybrid material based mirror coatings for picosecond laser applications" and published in Optics and Laser Techn...

    2024-06-12
    Ver tradução
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    Ver tradução
  • Breakthrough 8-channel 915nm SMT pulse laser, ushering in a new era of laser radar applications

    The 8-channel 915nm SMT pulse laser can enhance the long-range laser radar system of autonomous vehicle;An 8-channel QFN package certified by AEC-Q102, featuring high performance and efficiency, utilizing proprietary wavelength stabilization technology from AMS Osram;Based on over 20 years of experience in pulse laser technology.Shanghai, China, August 8, 2024- AMS, a leading global optical soluti...

    2024-08-09
    Ver tradução
  • Shenzhen Guangfeng Technology may cooperate with well-known German enterprises

    Recently, Shenzhen Guangfeng Technology Co., Ltd. once again disclosed a development fixed-point notice. Unlike other fixed-point notices received this year, this fixed-point notice points to the optical components of the vehicle's dynamic color pixel lights. According to company disclosure, Guangfeng Technology recently received a development notice from a leading international brand car compan...

    2024-11-18
    Ver tradução
  • Implementing and studying non Hermitian topological physics using mode-locked lasers

    A mode-locked laser is an advanced laser that can generate very short optical pulses with durations ranging from femtoseconds to picoseconds. These lasers are widely used for studying ultrafast and nonlinear optical phenomena, but they have also been proven to be applicable to various technological applications.Researchers at the California Institute of Technology have recently been exploring the ...

    2024-03-27
    Ver tradução