Português

150 kW Ultra High Power Laser Sensor Released

977
2024-12-27 14:30:51
Ver tradução

Recently, MKS announced the launch of a brand new Ophir ® A 150 kW ultra-high power laser sensor designed specifically for measuring ultra-high power levels up to 150 kW. This sensor has excellent accuracy and reliability, suitable for industrial and defense fields.

This water-cooled calorimeter has a working wavelength range of 900-1100 nm and can measure power from 10 kW to 150 kW. Its extremely low reflectivity (<0.5%) ensures operational safety. The 150 kW sensor integrates a beam collector and measurement unit, designed to meet the growing demand for higher power in applications. Applications such as the development and testing of high-power fiber lasers, directional energy systems, and cutting and drilling in industrial production.

Ophir Photonics General Manager Reuven Silverman said, "Directed energy and industrial applications such as cutting are driving demand for higher power lasers, but so far there is no reliable solution for situations where power exceeds 120 kW. The Ophir 150 kW ultra-high power laser sensor takes high-power measurement to a new level. It provides accurate and reliable results for the research and production teams of high-power laser manufacturers and directed energy weapon developers. Whether integrated into third-party systems or used with easy-to-use Ophir software, this sensor is a powerful tool for ultra-high power laser measurements, providing reliability and operational efficiency.

The Ophir 150 kW ultra-high power sensor consists of two components: a beam collector for processing high-power laser absorption and heat dissipation, and a unit for measuring power levels. The measurement unit is equipped with an RS232 interface and an "intelligent connector" interface, which can be used in conjunction with MKS's Centauri, StarBright, StarLite, and other Ophir smart displays; Juno and Juno+compact USB PC interface; Juno RS, Pulsar, and Quasar virtual power and energy meters; And EA-1 Ethernet adapter.

The design of the 150 kW ultra-high power sensor fully considers flexibility. Cooling options include using tap water or deionized (DI) water. With a 200mm aperture, it is lightweight and measures 520x545x750mm in size. When not containing water, it weighs less than 60 kg.

Source: Yangtze River Delta Laser Alliance

Recomendações relacionadas
  • TRUMPF machine cooler saves 50 percent energy

    Ditzingen, 05. March 2025 – At its in-house exhibition INTECH, high-tech company TRUMPF is showcasing a new cooler for its laser cutting machines. The new unit is capable of reducing energy consumed during the cooling process and uses fifty percent less energy than conventional solutions. Unlike conventional coolers, the main components of this new solution— such as pumps, fans and compressors— ar...

    03-14
    Ver tradução
  • Sivers Semiconductors, an optoelectronic semiconductor company, splits off its photonics business and goes public independently

    Recently, Sivers Semiconductors, a leading supplier of integrated chips and photonics modules for communication and sensing solutions, announced a significant strategic initiative:It will divest its subsidiary Sivers Photonics Ltd, which has signed a non binding letter of intent (LOI) with byNordic Acquisition Corporation and plans to achieve independent listing through a merger. This move aims ...

    2024-08-26
    Ver tradução
  • Single photon avalanche diode for millimeter level object recognition using KIST

    LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.LiDAR calculates the distance an...

    2024-02-03
    Ver tradução
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    Ver tradução
  • Lorenz competes in the LiDAR market with MEMS galvanometer technology

    At the recently concluded 2024 International Consumer Electronics Show (CES), automotive related technologies and solutions shone brightly, and a group of Chinese LiDAR suppliers competed on the same stage.The technologically advanced products, systematic solutions, continuously increasing delivery and market retention have to some extent proven that in the context of the development of automotive...

    2024-04-13
    Ver tradução