Português

Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of attosecond high spatiotemporal resolution imaging

391
2024-10-14 14:32:35
Ver tradução

The attosecond light source has the characteristics of ultra short pulse width, short wavelength, high coherence, and high-precision synchronous control, and has extremely high potential for application in the field of ultrafast imaging. Especially when the attosecond light source reaches the "water window" band, oxygen and hydrogen atoms have weak absorption of X-rays in this band, so water is relatively transparent to it, while basic elements such as carbon and nitrogen that make up living organisms have strong absorption of X-rays in this band. Therefore, high contrast imaging of biological samples can be achieved, which is expected to promote the research of high spatiotemporal resolution living cells. However, constrained by the uncertain relationship between time and energy, attosecond pulses have both extremely high time resolution and ultra wide spectra, which can cause significant color differences in imaging systems. For example, isolated attosecond pulses generated by high-order harmonics can have a pulse width of around 50 as and a typical bandwidth of over 100% (where Δ λ represents the full width of the spectrum and λ c represents the center wavelength).

Figure 1. Demonstration of multi-color diffraction. (a) Diffraction setting. (b) Example image. (c) FT of (b). (d) Obtained through zero padding around (b). (e) FT of (d). (f) Obtain (e) through cropping.

Meanwhile, attosecond pulses are typically in the extreme ultraviolet/soft X-ray wavelength range and lack high-quality optical components for reflection, focusing, beam splitting, and combining, which imposes many limitations on imaging systems. Therefore, in order to achieve attosecond imaging technology, it is necessary to overcome the difficulties of short wave band imaging and solve the interference between different spectral components in ultra wideband spectra, which is a major challenge that troubles current research at home and abroad.

Figure 2. (a) (d) Narrow band coherent diffraction imaging; (b) (e) Direct inversion results of broadband optical diffraction patterns; (c) (f) Broadband coherent diffraction imaging achieved by the monochromatization method proposed by the team

Recently, the Amis Science and Technology Research Center of Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, made new progress in the research of high spatiotemporal resolution imaging in Amis. The research results were published in the international high-level academic journal Photonics Research (IF: 7.254). The first author of the paper is Li Boyang, Special Research Assistant of Xi'an Institute of Optics and Mechanics, Chinese Academy of Sciences, and the correspondence author is Wang Hushan, Associate Researcher and Fu Yuxi, Researcher.

The research team proposed an efficient gradient monochromatization method based on Fourier transform mode mapping, which can process complex/broad spectrum diffraction patterns to obtain high-quality monochromatic diffraction patterns, and then use traditional coherent diffraction imaging methods to achieve high-resolution imaging (as shown in Figure 2). This method greatly expands the applicable bandwidth of imaging light sources, supports the use of light sources with spectral bandwidth up to 140% for single shot imaging, and compresses the computation time to the second level. At the same time, this method also supports comb like spectra spanning multiple octave bands, enabling imaging applications of high-order harmonic light sources (attosecond pulse trains) with higher luminous flux. In addition, based on this diffraction imaging technology, the research team also proposed a spectral measurement method without gratings and lenses, which reduces the difficulty of measuring attosecond pulse spectra in the extreme ultraviolet/X-ray band. The research achievement has taken a crucial step towards breaking through the high spatiotemporal resolution imaging of attosecond, providing important technical support for the imaging terminal of "advanced attosecond laser facilities", and is expected to promote the application and development of attosecond light sources in laser precision processing, biomedicine, semiconductors and other fields.

The research work has been supported by the national key research and development plan - the special project of intergovernmental international scientific and technological innovation cooperation, the youth team plan of the Chinese Academy of Sciences in the field of stable support for basic research, the Chinese Academy of Sciences international partnership plan, the pre research of major scientific and technological infrastructure of the Chinese Academy of Sciences, the basic research plan of natural sciences in Shaanxi Province and other projects.

Source: Opticsky

Recomendações relacionadas
  • Application of Multipurpose Femtosecond Laser Interferometry in High Precision Silicon Nanostructures

    Researchers from the Laser Processing Group of the IO-CSIC Institute of Optics in Spain report on the application of multi-purpose femtosecond laser interference in high-precision silicon nanostructures. The related research was published in Optics&Laser Technology with the title "Versatile femtosecond laser interference pattern applied to high precision nanostructured of silicon".Highlights:...

    2024-07-10
    Ver tradução
  • Researchers successfully 3D printed polymer based robotic arms through laser scanning

    Researchers from the Federal Institute of Technology in Zurich and an American startup used slow curing plastic to develop durable and sturdy robots using high-quality materials.The team can now print these complex robots at once and combine soft, elastic, and rigid materials together. This allows for the creation of precision structures and parts with cavities as needed.Inkbit, a derivative compa...

    2023-11-16
    Ver tradução
  • An advanced laser processing laboratory for semiconductor materials and an all solid-state advanced laser research center will be established here

    On October 15th, the Laipu Technology National Headquarters and Integrated Circuit Equipment R&D and Manufacturing Base project successfully held a groundbreaking ceremony in the Chengdu High tech Zone.Project Business CardTotal project investment:1.66 billion yuanProject area:Covering an area of 39 acres, with a construction area of 65000 square metersProject Planning:Construction will begin...

    2023-10-18
    Ver tradução
  • Researchers have reinvented laser free magnetic control

    In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.The Role of Optical Vacuum W...

    2023-11-09
    Ver tradução
  • The world's highest power industrial grade fiber laser is released in Tianjin

    On August 31st, Tianjin Kaipulin Optoelectronics Technology Co., Ltd. (hereinafter referred to as Kaipulin), a Tianjin Port Free Trade Zone enterprise, officially released the world's first 200000 watt ultra-high power industrial grade fiber laser, breaking the record for the highest power of industrial grade fiber lasers in the world and marking China's stable position in the international advanc...

    2024-09-02
    Ver tradução