Português

Shanghai Institute of Optics and Fine Mechanics has made progress in the field of femtosecond laser air filamentation self focusing threshold research

222
2024-08-02 14:22:44
Ver tradução

Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the repetition rate dependent femtosecond laser air filamentation self focusing threshold. The relevant research results were published in Optics Express under the title "Pulse repetition rate effect on the critical power for self focusing of femtosecond laser in air".

Femtosecond laser filamentation is generated by the dynamic balance between Kerr self focusing effect and plasma defocusing effect, and has shown great potential for applications in fields such as ultra short pulse compression, terahertz radiation, atmospheric remote sensing, and weather control. The development of high-frequency femtosecond laser technology has brought new opportunities for optical fibers in fields such as cloud penetration, artificial lightning induction, and laser processing.

In recent research, the team focused on the atmospheric filamentation process of high-frequency femtosecond laser and discovered the characteristics and laws of high-frequency femtosecond laser filamentation. (Adv. Photon. Res. 4, 2200338 (2023)) They clarified the mechanism of the effect of pulse accumulation on light intensity (High Power Laser 11, e46 (2023)), plasma density, and temperature (Chin. Opt. Lett. 22, 013201 (2024)), and solved the bottleneck problem of automatic filamentation caused by pulse accumulation effect (Light: Sci.&Appl. 13, 42 (2024)). However, the self focusing threshold is a key parameter for evaluating whether the filamentation process occurs, and the effect of high repetition rate dependent pulse accumulation on the self focusing threshold of femtosecond laser filaments is not yet clear.

Figure 1 shows fluorescence signals induced on the filament axis at incident energies of (a) 240 µ J, (b) 280 µ J, (c) 300 µ J, and (d) 325 µ J with a repetition rate of 1 kHz. (e) Residual plots of traditional Gaussian fitting and bimodal fitting

In this work, researchers proposed a new method for determining the self focusing threshold based on bimodal fitting by utilizing the dual effects of geometric focusing and Kerr self focusing during femtosecond laser air filamentation. And through in-depth analysis of residuals, root mean square error, fitting determination coefficients, etc., it is proved that the proposed method is superior to the traditional Gaussian fitting method and can more accurately determine the self focusing threshold. The research team measured the self focusing threshold of femtosecond laser filamentation in air at 1 kHz, 500 Hz, 100 Hz, and 50 Hz repetition rates, and discovered a new pattern of lower self focusing threshold and easier filamentation of femtosecond laser pulses transmitted in air compared to lower and higher repetition rates. The numerical simulation results confirmed the accuracy of the experimental pattern. This work provides new ideas for the study of self focusing and is of great significance for a deeper understanding of the characteristics of high repetition rate femtosecond laser filaments.

Figure 2 shows the functional relationship between the peak position (bimodal fitting) of the fluorescence signal induced by the filament and the pulse energy at repetition rates of (a) 1 kHz, (b) 500 Hz, (c) 100 Hz, and (d) 50 Hz. The intersection point between the red fitting lines represents the self focusing threshold. (e) The functional relationship between self focusing threshold and repetition rate obtained using traditional Gaussian fitting (blue) and bimodal fitting (red)

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Recomendações relacionadas
  • Veeco Instruments wins IBM big order

    On August 14th local time, Veeco Instruments, a well-known American laser annealing manufacturer, announced an important cooperation with technology giant IBM. It is reported that IBM has selected Veeco Instruments' WaferStorm wet processing system as support for its advanced packaging applications, and the two parties have signed a joint development agreement to explore the potential of utilizi...

    2024-08-23
    Ver tradução
  • Rachel's latest laser welding and cutting machine processes thicker materials at lightning speed

    Rachel is a pioneer in laser technology solutions and is pleased to announce a significant update to its laser welding and cutting machines. These enhanced features aim to provide customers with faster turnaround time and higher accuracy, reaffirming Rachel Corporation's commitment to providing cutting-edge laser cutting and welding solutions to meet the needs of different industries.Lache Company...

    2024-04-07
    Ver tradução
  • MedWorld Advisors acquires stakes in two companies to establish MedTech Laser Group

    Recently, MedWorld Advisors, an internationally renowned healthcare M&A consulting firm, is pleased to announce the establishment of a new medical laser company, MedTech Laser Group, by acquiring shares in two similar companies.The birth of MedTech Laser Group originated from A. in Nuremberg, Germany R. C Laser GmbH and G. from Caesarea, Israel (adjacent to Tel Aviv) N. The successful acquisit...

    2024-08-12
    Ver tradução
  • Researchers have implemented a creative approach to reduce stray light using spatial locking technology based on periodic shadows

    Reducing stray light is one of the main challenges in combustion experiments using laser beams (such as Raman spectroscopy) for detection. By using a combination of ultrafast laser pulses and gated ICCD or emICCD cameras, a time filter can be effectively used to remove bright and constant flame backgrounds. When the signal reaches the detector, these cameras can open electronic shutters within the...

    2023-10-16
    Ver tradução
  • Snapmaker introduces new 20W and 40W laser modules

    Snapmaker has opened pre-orders for 20W and 40W laser modules, which are significant upgrades to the modules available on existing Snapmaker machines.Snapmaker says that with the 40W module installed, you will be able to cut 15 mm basswood plywood at a time at a speed of 20 mm/SEC. With 20W, you will cut 10mm at a rate of 10mm/SEC. That's a lot more than Artisan and Snapmaker 2.0 - both are comp...

    2023-08-04
    Ver tradução