Português

Shanghai Institute of Optics and Fine Mechanics has made progress in the research of interferometer wavefront calibration methods

210
2024-07-23 11:31:18
Ver tradução

Recently, the research team of the High end Optoelectronic Equipment Department at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of wavefront calibration methods for interferometer testing. The relevant research results were published in Optics Express under the title of "High precision wavefront correction method ininterometer testing".

High precision optical components have been fully applied in fields such as laser technology, optical communication, medical imaging, astronomy and space exploration, semiconductor manufacturing, and scientific research. The use of interferometers is currently the main method for high-precision optical detection. In order to obtain the true surface shape error of the test component, the wavefront calibration method must be used to calibrate the wavefront error of the interferometer test. However, there is currently no complete method for wavefront calibration in optical processing.

Figure 1. Ring error generation

 


Figure 2. Results of Ring Error Repair

In this work, the research team proposed a new high-precision optical surface wavefront correction method to address the difference between wavefront error in Fizeau interferometer testing and actual surface error. The main content includes fitting optical surface function parameters, correcting lateral distortion, eliminating misalignment errors, and calculating concave surface errors. And the error of this method was analyzed in depth from the aspects of function parameter fitting, ray tracing, interpolation, etc. The wavefront calibration of the off-axis parabolic mirror in the zero position test configuration proves the effectiveness of this method. The results showed that the circular error generated by the experiment was significantly reduced, and the off-axis error increased from 0.23 λ to 0.05 λ (λ=632.8nm). The PV deviation from the non spherical surface exceeded 8.5mm. This study is of great significance in the high-precision optical component detection process.

Source: Shanghai Institute of Optics and Fine Mechanics

Recomendações relacionadas
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    Ver tradução
  • Fiber laser and deburring machine have improved the production efficiency and manufacturing capability of MITS Alloy

    The heavy-duty aluminum Ute tray and roof series of MITS Alloy have been greatly welcomed and demanded.The company is headquartered in Newcastle and was founded by Tim Lightfoot and Tony Brooks in January 2015. Tim's existing business, Safety MITS, provides maintenance equipment for mining, earthwork transportation, transportation, and related industries. They jointly determined that the four-whee...

    2024-05-15
    Ver tradução
  • Eurotech launches BestNet fiber rack mounting housing

    Fiber optic solution provider Eurotech announced the launch of a series of fiber optic rack mounting enclosures. The BestNet 19 inch top opening fiber optic interconnect unit is a fiber optic patch panel and cabinet, ideal for wiring, terminating, and managing fiber optic terminations, suitable for interconnect, cross connect, or splice applications in LAN environments. Modular fiber optic interco...

    2024-05-16
    Ver tradução
  • Stratasys Ltd. receives a $120 million investment from Fortissimo Capital

    It is reported that Stratasys Ltd. (NASDAQ: SSYS) announced on February 2nd that it has received a $120 million investment from Fortissimo Capital, an Israeli private equity firm. This transaction directly purchases 11.65 million newly issued shares at a price of $10.30 per share, representing a premium of 10.6% compared to the company's closing price on January 31, 2025. As of press time, it has ...

    02-05
    Ver tradução
  • University of Science and Technology of China realizes quantum elliptical polarization imaging

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the research of quantum elliptical polarization imaging. The research group of Professor Shi Baosen and Associate Professor Zhou Zhiyuan combined high-quality polarization entangled light sources with classical polarization imaging technology to observe the bir...

    04-14
    Ver tradução