Português

The Key Role of Laser Pointing Stability in the Application of Lithography Systems

790
2024-07-02 14:24:25
Ver tradução

Lithography is one of the core processes in semiconductor manufacturing, and extreme ultraviolet lithography technology, as a new generation lithography technology, is also in a rapid development stage. The basic principle is to use photoresist (also known as photoresist) to form corrosion resistance due to photochemical reactions after being photosensitive, and to engrave the patterns on the mask onto the processed surface. The main steps of photolithography of silicon dioxide in semiconductor chips include coating photoresist, aligning the mask and exposing it, dissolving the photosensitive photoresist layer with developer, dissolving the unprotected silicon dioxide layer with etchant, and removing the photosensitive photoresist layer.

In lithography systems, stable laser pointing is crucial as it directly affects the accuracy and consistency of the lithography pattern. There are three main factors that affect the stability of beam pointing, namely the displacement of the laser itself, the vibration differences between lasers and lighting systems on different bases, and the disturbances of the optical system during transmission. These disturbances will have a serious impact on the quality of lithography.

Firstly, the stability of laser pointing is crucial for ensuring precise etching of the pattern. During the lithography process, the laser beam needs to be precisely irradiated onto a specific area on the silicon wafer to achieve accurate transfer of patterns. If the laser pointing is unstable, it can cause problems such as displacement of the graphic position and size changes, seriously affecting the quality and performance of the product.

Secondly, the stability of laser pointing is also related to the repeatability and consistency of lithography. In semiconductor manufacturing, it is often necessary to perform photolithography on a large number of silicon wafers, which requires a high degree of repeatability and consistency in the photolithography process. If the laser pointing is unstable, the results of each photolithography will vary, resulting in inconsistent performance between product batches, increasing manufacturing difficulty and cost.

Therefore, the stability of laser pointing is particularly important under the constantly improving accuracy requirements.


We can achieve relative stability of the beam by reducing vibration and temperature changes, but this is only a passive compensation method and cannot completely avoid these interferences. In this regard, an active compensation system can be used to adjust the optical path and turn the beam back when it deviates, making the environmental requirements less stringent.

The Aligna laser beam pointing stabilization system from TEM company can effectively solve and achieve the above functions. The system consists of two Fast Reflecting Mirrors (FSMs), a Position Detector (PSD), and a Control Cabinet. The deflection of FSM can be achieved by combining electric motors and piezoelectric ceramics, ensuring both wide range and high accuracy of the fast reflector. Coupled with a high-resolution position detector (PSD), the total accuracy of the system can reach the sub micron level. In addition, response time is also crucial for systems that require real-time stability of laser beams, and excellent algorithms can limit it to the range of 0.2ms with a closed-loop bandwidth exceeding 5KHZ.

The following diagram is a schematic diagram of the beam detection and stabilization system. After passing through two fast reflection mirrors R1 and R2, the laser is incident on the beam splitter BS1. The transmitted light is used for subsequent experiments and normal use, and a small amount of reflected light will enter the PSD for beam detection. PSD is a photoelectric device based on the transverse photoelectric response of a semiconductor PN junction. According to the output voltage of the centroid of the incident light spot, two PSDs are used to detect the position deviation and angle deviation of the beam, respectively. After the controller detects the deviation information, it passes the feedback information to the FSM through an algorithm, controls the rotation of the FSM, and realizes the pointing correction of the main beam.

The following figure shows the displacement of the spot position before and after using the system. It can be clearly seen that the spot position is unstable and has a significant displacement before the system works; After the system starts working, the position of the spot is basically controlled near the origin, and the stability of the position is significantly improved.

Source: Yangtze River Delta Laser Alliance

Recomendações relacionadas
  • Progress has been made in the research of single shot characterization technology for complex combination laser pulses at Shanghai Institute of Optics and Fine Mechanics

    Recently, the research team of the High Power Laser Physics Joint Laboratory at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made significant progress in the study of single shot characterization technology for complex combination laser pulses. The research team utilized an improved broadband transient grating frequency resolved optical switch technology (T...

    03-24
    Ver tradução
  • Zhongke Yuchen laser welding technology opens up vast space for the welding process of new energy vehicle motors

    The application of laser welding technology in the welding process of new energy vehicle motors is a typical example of Zhongke Yuchen in many welding cases. The main accessories of the automatic laser welding equipment for new energy vehicle motors are imported products, and the welding process is mature and stable.Motor rotorMotor statorLaser welding of motor stator tapThe circumferential wel...

    2023-10-18
    Ver tradução
  • Industrial laser giant Coherent receives $33 million investment

    Recently, according to media reports, industrial laser giant Coherent has signed a "preliminary terms memorandum" with the US Department of Commerce, which will receive up to $33 million in investment under the Chip and Science Act.It is reported that the funds will mainly be used to support the modernization and expansion project of the cutting-edge manufacturing cleanroom in Coherent's existing ...

    2024-12-12
    Ver tradução
  • Single photon avalanche diode for millimeter level object recognition using KIST

    LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.LiDAR calculates the distance an...

    2024-02-03
    Ver tradução
  • Construction of Advanced New Laser Research Centers in American Universities

    The ATLAS R&D center is expected to be completed by mid-2026!A powerful new laser research facility located on the Foothills campus of Colorado State University will begin construction this month. The facility is planned to be put into use in mid-2026 and is the result of 40 years of laser development research at Colorado State University. It is a collaboration with the Fusion Energy Science P...

    2024-10-30
    Ver tradução