Português

Chinese University of Science and Technology Reveals a New Physical Mechanism of Photoinduced Particle Rotation

905
2024-06-25 14:57:34
Ver tradução

Light has angular momentum properties. Circularly polarized or elliptically polarized beams carry spin angular momentum (SAM), while beams with helical phase wavefronts carry orbital angular momentum (OAM). During the interaction between light and particles, the transfer of angular momentum can generate optical torque, driving particles to rotate. Among them, the transfer of optical spin angular momentum will drive particles to spin around the axis of rotation, while the transfer of orbital angular momentum can drive particles to rotate around the optical axis. Photoinduced rotation provides a new dimension for micro particle manipulation and has been widely applied in fields such as optical sensing, optorheology, and microrobots.

Recently, Associate Professor Gong Lei's research group from the Department of Optics and Optical Engineering at the University of Science and Technology of China collaborated with Professor Qiu Chengwei from the National University of Singapore to reveal a new physical mechanism of photo induced particle spin. It was found that even if the incident beam does not carry spin angular momentum, it can generate controllable spin torque after strong focusing. This mechanism utilizes the optical Hall effect to achieve local transfer of spin angular momentum in the focusing field by regulating the spin orbit interaction, thereby driving the captured particles to generate continuous spin motion.

Figure 1. Schematic diagram of the physical mechanism of photo induced particle spin

The relevant research results were published online on June 21st in the internationally renowned academic journal Physical Review Letters under the title "Controllable Microparticle Spinning via Light without Spin Angular Momentum".

Due to the spin orbit interaction, the two spin components of a linearly polarized or radially polarized beam will undergo lateral separation under tight focusing conditions, which is a type of optical spin Hall effect [Figure 1. (a, b)]. However, the spacing of this spin splitting is only on the subwavelength level, and it cannot effectively transfer spin angular momentum when interacting with particles, and cannot drive particle spin [Figure 1. (d, e)]. The research team cleverly uses the optical orbit Hall effect to regulate the distribution of spin angular momentum density in the focusing field. By introducing an orbital angular momentum superposition state in the incident radially polarized light field [Figure 1. (c)], the radial spacing of the two spin components is effectively controlled, achieving the effect of spin angular momentum in the focusing field on microscopic particles. Local transmission ultimately achieved controllable rotation control of particles [Figure 1. (f)].

On this basis, the research team further developed the parallel manipulation function of holographic optical tweezers, which achieved simultaneous capture of multiple particles, independent translation and rotation manipulation by adjusting the wavefront of the incident light field. This study reveals the principle of orbital angular momentum controlling the spin of the focused light field, and provides new ideas for the study of mechanical effects caused by optical spin orbit interactions.

Dr. Wu Yijing from the Department of Optics and Optical Engineering at the University of Science and Technology of China is the first author of the paper, while Associate Professor Gong Lei and Professor Qiu Chengwei from the National University of Singapore are the corresponding authors of the paper. The above research has been supported by the National Natural Science Foundation of China and the Anhui Provincial Natural Science Foundation.

Source: Guangxing Tianxia

Recomendações relacionadas
  • British scientists pioneered groundbreaking laser tools to help discover exoplanets

    Physicists from the University of Heriot and the University of Cambridge have developed an innovative laser system called Astrocomb, which can significantly improve the detection of exoplanets. This advanced tool can accurately measure the spectra emitted by nearby stars, which fluctuate due to the gravitational influence of orbiting planets. It is expected that this technology will enhance resear...

    2024-04-02
    Ver tradução
  • The research team has developed a mechanical luminescent touch screen that can work underwater

    The optical properties of afterglow luminescent particles in mechanical luminescence and mechanical quenching have attracted much attention in various technological applications. A group of researchers from Pohang University of Science and Technology has attracted attention by developing an optical display technology with ALP that can write and erase messages underwater.The team is composed of Pro...

    2024-03-08
    Ver tradução
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    Ver tradução
  • Amazon's Kuiper Program Successfully Tested Satellite Space Laser

    SpaceX and its billionaire CEO Elon Musk may finally have reason to look back in the satellite internet competition. On Thursday, Amazon revealed that it had successfully used a space laser technology called "Optical Intersatellite Link" to transmit connections between two Kuiper Program satellites in low Earth orbit, located 621 miles apart, at a speed of 100 gigabits per second. This is approxim...

    2023-12-18
    Ver tradução
  • Revealing the essence of optical vortices: a step towards understanding the interaction between light and matter

    In a groundbreaking scientific study published in Volume 13 of the Scientific Report, researchers reported on the results of Young's double slit interference experiment using oscillating vortex radiation under a photon counting system. The experiment involves using a spiral oscillator to emit second harmonic radiation in the ultraviolet range. Using an ultra narrow bandpass filter in the low curre...

    2023-12-29
    Ver tradução