Português

Shanghai Institute of Optics and Mechanics proposes a new scheme of Er doped silicate fiber as an extended L-band broadband amplifier

221
2024-06-05 15:03:58
Ver tradução

Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on field strength optimization of Er doped silicate fiber as an extended L-band broadband amplifier. Relevant research achievements were published in Optics Letters under the title of "Er doped silicate fiber amplifiers in the L-band with flat gain".

The rapid development of big data and artificial intelligence has put forward higher requirements for the capacity of dense wave division multiplexers (DWDMs) in the new generation of optical communication systems. Compared to the mature C-band (1530-1565nm) erbium-doped fiber amplifier (EDFA), the L-band (1565-1625nm) EDFA has become a new generation of scalable optical communication products. However, the development of L-band EDFA faces difficulties and challenges: the gain of Er-doped fibers is limited by low longwave emission cross-sections and severe excited state absorption, resulting in very small gains for wavelengths greater than 1600nm. Therefore, how to improve the long wave gain of Er doped fiber materials is a key scientific problem that urgently needs to be solved in L-band broadband amplifiers.

The research team proposes a new scheme of micro ion field emphasis control to enhance the gain and spectral shaping of Er ions in a silicate fiber matrix. The feasibility of using silicate optical fibers as long wave gain enhancing substrates for Er ions has been confirmed both theoretically and experimentally. This scheme has achieved significant improvement in L-band gain and optimization of gain flatness in Er doped silicate optical fibers. At the same time, by adopting an all fiber scheme with heterogeneous fiber fusion, only a 1.5m long silicate fiber is used. At the longest wavelength of 1625nm in the L-band, the gain coefficient is 4.7dB/m, which is better than the 0.3dB/m of quartz fiber. In addition, the gain flatness of the fiber in the L-band is 0.8dB, which is better than the 5dB of quartz fiber. Compared to quartz fiber, this fiber has a higher doping concentration, shorter usage length, and larger gain coefficient, providing key material support for the new generation of L-band EDFA.

This work has received support from the National Natural Science Foundation of China and national key projects.


Figure 1: L-band gain of Er doped silicate optical fiber

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Recomendações relacionadas
  • Ortel launches advanced 1550nm laser to enhance LiDAR and optical sensing functions

    Ortel belongs to the Photonics Foundries group and has launched its latest innovative product - the 1786 1550 nm laser module, aimed at significantly improving optical sensing in various applications. This laser module is designed specifically for continuous wavelength operation and is a key component of systems that require coherent light sources for precise sensing in environments with fluctuati...

    2024-03-16
    Ver tradução
  • An optical display technology based on mechanical optical mechanism

    The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP ...

    2024-03-12
    Ver tradução
  • Researchers use machine learning to optimize high-power laser experiments

    High intensity and high repetition lasers rapidly and continuously emit powerful bursts of light, capable of emitting multiple times per second. Commercial fusion energy factories and advanced compact radiation sources are common examples of systems that rely on such laser systems. However, humans are a major limiting factor as their response time is insufficient to manage such rapid shooting syst...

    2024-05-24
    Ver tradução
  • Shenzhen Guangfeng Technology may cooperate with well-known German enterprises

    Recently, Shenzhen Guangfeng Technology Co., Ltd. once again disclosed a development fixed-point notice. Unlike other fixed-point notices received this year, this fixed-point notice points to the optical components of the vehicle's dynamic color pixel lights. According to company disclosure, Guangfeng Technology recently received a development notice from a leading international brand car compan...

    2024-11-18
    Ver tradução
  • What are double- and triple-stack hybrid stepper motors

    Of the three primary stepper motor designs — permanent magnet, variable reluctance, and hybrid — hybrid stepper motors are arguably the most popular in industrial applications, combining the best performance characteristics of permanent magnet and variable reluctance types.Hybrid stepper motors are constructed with a rotor made of two sections, or cups, with a permanent magnet between ...

    2023-09-16
    Ver tradução