Português

Microscopic Marvel photon devices have the potential to completely change the way physics and lasers are processed

207
2024-06-04 15:20:04
Ver tradução

Researchers at Rensselaer Institute of Technology have developed a device that operates at room temperature, which is the first topological quantum simulator to operate under strong light matter interaction mechanisms, making high-tech research easier in cutting-edge ways.

Researchers at Rensselaer Institute of Technology have developed a device no larger than human hair, which will enable physicists to explore the fundamental concepts of matter and light. This study, published in the journal Nature Nanotechnology, can also help researchers develop more efficient lasers that are being used in a range of fields such as medicine and manufacturing.

This device is composed of a specific material called photonic topological insulator, which can guide photons (wave shaped particles formed into light) to specially designed interfaces without dispersing them in the material.

Topological insulators can simulate the behavior of multiple photons in a coherent manner, enabling them to act as micro laboratories to study quantum phenomena at very small scales.

Professor RPI and senior author of Natural Nanotechnology, Wei Bao, pointed out that our photonic topological insulator is a significant breakthrough in the field of fundamental physics. Its unique design allows materials to operate at room temperature, which was previously a challenge due to expensive equipment.

Our progress in energy-saving lasers has led to a seven fold increase in energy demand for room temperature equipment, which is much higher than previously developed low-temperature equipment.
RPI scientists have designed a new mechanism that utilizes the same techniques as in semiconductor manufacturing, involving atomic and molecular layers to create appropriate structures.

Our progress in energy-saving lasers has led to a seven fold increase in energy demand for room temperature equipment, which is much higher than previously developed low-temperature equipment.

RPI scientists have designed a new mechanism that utilizes the same techniques as in semiconductor manufacturing, involving atomic and molecular layers to create appropriate structures.

The device was manufactured by researchers who grew ultra-thin plates of halide perovskite, a crystal containing cesium, lead, and chlorine, and produced a polymer on it. They sandwiched these crystal plates and polymers between thin sheets of different oxide materials to create an object approximately 2 microns thick and 100 microns wide, which is roughly the same length and width as ordinary human hair.

When researchers applied lasers to devices, they observed a triangular pattern that lit up at the interface designed in the material. This mode is caused by the topology characteristics of the laser determined by the device design.

Shekhar Garde, Dean of the RPI School of Engineering, emphasized the prospects of studying quantum phenomena at room temperature.
The study of atmospheric carbon capture in the Mesozoic volcanic regions of central China is the main topic discussed in Nature Nanotechnology. The title of this paper is "The Cohesive Phenomenon in Topological Valley Halls".
Funding from the National Science Foundation and the Office of Naval Research has played an important role in funding this research.

Source: Laser Net

Recomendações relacionadas
  • A Large Angle Color Holographic 3D Display System Based on Color LCD Grating

    Holographic display technology provides the ultimate solution for true 3D display, with enormous potential in augmented reality and virtual reality. However, the color and viewing angle of holographic 3D displays mainly depend on the wavelength of the laser and the pixel size of the current spatial light modulator. The inevitable color difference and narrow viewing angle in conventional systems se...

    2024-01-24
    Ver tradução
  • Ultra fast laser tracking the "ballistic" motion of electrons in graphene

    Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.The motion of electrons is of...

    2024-01-09
    Ver tradução
  • Japan and Germany jointly develop ultra high speed laser material deposition technology

    Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes o...

    2024-10-25
    Ver tradução
  • Gas reduction technology of fiber laser helps to improve the cutting quality of low-carbon steel

    The Mitsubishi GX-F Advanced series of artificial intelligence enabled fiber lasers now use patented gas and burr reduction technology to help improve cutting quality while reducing gas consumption when cutting low-carbon steel.Mitsubishi Laser's proprietary Agr Mix nozzle technology does not require an external mixing tank or high-pressure oxygen. The combination of low-pressure air and nitrogen ...

    2024-02-14
    Ver tradução
  • Shanghai Institute of Optics and Fine Mechanics has made progress in composite material based picosecond mirrors

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of composite based picosecond mirrors. The related research results were published in Optics and Laser Technology under the title of "Hybrid Material Based Mirror Coatings for Picosed Laser Applications"....

    2024-07-12
    Ver tradução