Português

Progress in the Study of Nonlinear Behavior of Platinum Selenide Induced by Strong Terahertz at Shanghai Optics and Machinery Institute

182
2024-05-23 14:28:07
Ver tradução

Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the nonlinear behavior and mechanism of platinum selenide in terahertz band. The research team systematically studied the spectral and optical intensity characteristics of platinum selenide under strong terahertz pulse excitation, revealing two nonlinear processes dominated by the real and imaginary parts of nonlinear polarization. The related achievements were published in Optics Letters under the title "Terahertz triggered ultra fast non-linear optical activities in two dimensional centrosymmetric PtSe2".

Terahertz is an electromagnetic spectrum region between millimeter waves and infrared optics, and exploring potential materials for application in the terahertz band is crucial for the development of terahertz technology. The two-dimensional topological semi metallic platinum selenide exhibits excellent performance in terahertz generation and modulation due to its broadband photoresponse and photoelectric response characteristics. 
However, there is still a lack of systematic research on the basic nonlinear optical properties of platinum selenide under strong terahertz interaction. Therefore, exploring the nonlinear phenomena and underlying mechanisms of platinum selenide in the terahertz domain is of great significance.

In this study, the research team utilized ultrafast terahertz pumping infrared detection technology to investigate the interaction between terahertz pulses and platinum selenide thin films. The strong terahertz pulse breaks the inversion symmetry center of platinum selenide through nonlinear polarization and radiates a strong second harmonic signal using its nonlinear polarization real part effect. The time scale of the second harmonic signal is comparable to that of terahertz pulses, and it has a high signal-to-noise ratio and switching ratio, confirming that this property can be applied to terahertz modulation and logic gates. On the other hand, due to the effect of the imaginary part of nonlinear polarization, the conductivity of platinum selenide is modulated by strong terahertz, exhibiting a phenomenon of enhanced nonlinear absorption. This work reveals the nonlinear properties of platinum selenide in the terahertz region, achieving transient reversible inversion symmetry control of platinum selenide, and expanding the application potential of platinum selenide based two-dimensional materials in future optoelectronic devices and logic circuits.

The related work has received support from the National Natural Science Foundation of China and other organizations.

Figure 1 (a) Schematic diagram of terahertz pump infrared light detection system. (b) Waveform diagram of terahertz pump source. (c) Reflection spectra with and without terahertz pumping.

Figure 2 (a) Second harmonic spectrum of platinum selenide obtained under terahertz pumping infrared light detection system. (b) Comparison of the square of the terahertz waveform with the ultrafast dynamic process extracted at 725 nm. (c) The relationship between second harmonic signal strength and terahertz field strength. (d) Polarization properties of second harmonic signal intensity.

Figure 3 (a) The relationship between the transmittance of platinum selenide thin films and terahertz field strength. (b) The relationship between the conductivity of platinum selenide and terahertz field strength.

Source: Shanghai Institute of Optics and Precision Machinery

Recomendações relacionadas
  • LM GROUP USA expands its North American office

    Recently, BLM GROUP USA, a leading manufacturer of laser tube and sheet metal processing equipment, announced that its North American headquarters in Novi, Michigan has officially started construction, with plans to add 65000 square feet of modern facilities. It is expected to be completed and put into use in the third quarter of 2025.The specific investment amount for this expansion has not been ...

    2024-08-03
    Ver tradução
  • Focusing on the headquarters of Kuaidiqin Gen, a place of innovation and prosperity

    Have you ever imagined finding exquisitely designed and vibrant buildings in an industrial park? The headquarters of Deutschengen in Germany is such a place that combines creativity and practicality.Carefully planned and focused sustainable architecture combines design and functionality, showcasing the best appearance of industrial architecture and a vivid practice of its corporate spirit and valu...

    2024-04-28
    Ver tradução
  • The tesat optical terminal selected by Lockheed Martin satellite has passed ground testing

    Tesat Spacecom's laser communication terminal announced on October 26th that the company has passed critical ground testing deployed on NASA satellites.Tesat's SCOTT80 optical terminal was selected by Lockheed Martin, one of several manufacturers producing satellites for the Space Development Agency.SDA is an agency under the United States Space Force that plans to deploy a network of interconnect...

    2023-10-27
    Ver tradução
  • Youil Energy Tech suffered a loss of up to 65%

    In recent years, the secondary battery equipment sector in South Korea has been hit by a wave of disruption, with demand temporarily stagnant and stock prices struggling to gain support. Especially for Youil Energy Tech, a manufacturer of secondary battery equipment, as the company is a latecomer to the laser equipment market, its sales cost burden is relatively high. It is expected that in the fu...

    04-12
    Ver tradução
  • Changchun Institute of Optics and Mechanics has developed blue-green fluorescent transparent ceramics for laser lighting, laying a key fluorescence material foundation for full color laser lighting

    The project of the National Natural Science Foundation of China (Jilin Province) "Multicolor Transparent Silicate Garnet Fluorescent Ceramics for Laser Lighting" presided over by Zhang Jiahua, a researcher in the State Key Laboratory of Luminescence and Applications of Changchun Institute of Optics and Fine Mechanics, has made breakthrough progress, developed green fluorescent transparent ceramics...

    2023-09-26
    Ver tradução