Português

The largest ultra fast laser production base in the northwest has been completed and put into operation

452
2024-04-28 17:02:48
Ver tradução

As a representative enterprise in the field of ultrafast lasers, Zhuolai Laser has always performed outstandingly in the market, not only possessing dual technologies of "ultrafast+ultra strong", but also covering a remarkable range of technical routes in China. In 2022, the company completed a financing of 200 million yuan.

Recently, Zhuolai Laser announced to the public that its Xi'an subsidiary has completed relocation and expansion of production. The new venue has a total area of nearly 6000 square meters and is equipped with an office area, laboratory, staff restaurant, gym, yoga room, and leisure area. Among them, the 1000 level optical laboratory is nearly 3000 square meters.

Xi'an Zhuolai, as the first subsidiary established by Zhuolai Laser, has developed a team of nearly 100 people after 8 years of development. In addition to research and development, engineering, and mass production manufacturing functions, it also has comprehensive functions such as operation, sales, after-sales, and management. This relocation to a new location is expected to increase the annual production capacity of 3000 lasers, making Xi'an Zhuolai the largest production base for Zhuolai lasers and also the largest ultrafast laser production base in northwest China.

It is understood that Zhuolai Laser was established in 2014. Over the past decade of development, the company has consistently adhered to a business strategy that emphasizes both domestic and overseas markets. In September 2023, in order to enhance its comprehensive competitiveness and international influence, the company took an important step in the internationalization process: establishing a Korean branch, the first battle of international business was successful, achieving a "good start". The branch is located in the southern Gyeonggi do region of Seoul and has departments such as process application laboratories, technical service centers, and offices. After 6 years of development, the types of foreign customers of Zhuolai Laser have gradually expanded from initial medical customers to industrial and scientific research customers, with applications covering medical, display, scientific research, and semiconductor fields.

In addition to the continuous increase in business scale, Zhuo Lei also insists on close cooperation with universities and practices the exploration of national policies related to the coordinated development of industry, academia, and research. In early April 2024, the Zhuolai Laser Joint Laboratory and Peking University held a unveiling ceremony, which was also the first school enterprise joint laboratory in the laser industry chain in Beijing. The joint laboratory will engage in in-depth and close cooperation in areas such as high-power laser driven proton knives and the localization of ultra short and ultra strong laser devices, jointly promoting the deep integration of industry, academia, and research, and achieving win-win development for both schools and enterprises.

The new site of Xi'an Zhuoli is located in Building 4, Zone 2, Curvature Engine Photon Manufacturing, No. 3000 Biyuan Third Road, Chang'an District, Xi'an City, Shaanxi Province. It is the core area of the Silk Road Science City. The relocation of the new site is a testament to the fast lane of Zhuolai Laser and also foreshadows the bright future of the ultrafast laser market.

Source: Zhuolai Laser

Recomendações relacionadas
  • The world's first tunable wavelength blue semiconductor laser

    Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Le...

    2024-11-23
    Ver tradução
  • Tunoptix makes breakthrough progress in meta optical platform

    Tunoptix, a developer of computational meta-optics, based in Seattle, WA, has made what it calls “a breakthrough in mobile-scale spectral imaging”. The company’s latest meta-optical platform captures high-fidelity spectral signatures across the visible-to-NIR spectrum in a compact form factor smaller than 1 cm3, consuming less than 500 mW, and operating at real-time frame rates.Tunoptix’s ultra-c...

    07-02
    Ver tradução
  • IPG Photonics has unveiled a new dual-beam laser with single-mode core power at the Novi Battery Show in Michigan

    IPG Photonics Corporation, a global leader in fiber laser technology, will highlight new and innovative laser solutions at the Battery Show from September 12 to 14, 2023 in Novi, Michigan, USA.The IPG booth will include industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding speedTo...

    2023-09-12
    Ver tradução
  • The world's first 40000 watt groove laser cutting machine is put into production in China

    On the morning of August 26th, the world's first large-scale 40000 watt groove laser cutting machine production ceremony was successfully held at Shandong Century Zhenghua Metal Technology Co., Ltd. located in Zhoucun District, adding another boost to the rapid development of Zhoucun's stainless steel industry chain.Source:博览新闻

    2023-08-28
    Ver tradução
  • Generating dark and entangled states in optical cavities: unlocking new possibilities in quantum metrology

    Physicists have been working hard to improve the accuracy of atomic clocks, which are the most precise timing devices currently available. A promising way to achieve higher accuracy is to utilize spin squeezed states in clock atoms.Spin squeezed states are entangled quantum states in which particles work together to counteract their inherent quantum noise. These states provide incredible potential...

    2024-02-20
    Ver tradução