Português

Researchers use spectroscopic methods to characterize ancient Egyptian mining gemstones

354
2023-08-31 15:55:36
Ver tradução

In a recent study published in the journal AIP Advances, researchers used molecular and elemental spectroscopy techniques such as laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy to characterize mines in ancient Egypt.

In this study, researchers examined various gemstones that can be traced back to the era of the pharaohs. The team analyzed gemstone samples such as olivine, beryl/emerald, Tianhe stone, and amethyst to learn more about their chemical composition. Doing so can give researchers a better understanding of ancient Egyptian history, which may help determine the trade routes of ancient civilizations. Researchers compared these gemstones with olivine samples found in the Harat Kishb lava field in western Saudi Arabia.

Gems are valuable artifacts in archaeology. Gemstones have significant historical and cultural significance. By discovering ancient gemstones, archaeologists can use them to piece together what ancient society may have looked like and the values of people living in that era. These cultural relics reflect both cultural significance and visual beauty. However, finding an effective and efficient detection method to distinguish between natural gemstones and synthetic gemstones may be challenging, and spectroscopic techniques may be helpful in this process.

For example, LIBS is an effective technique that can distinguish different gemstone groups. By analyzing specific spectral windows, researchers identified the unique characteristic elements of each gemstone variety. Raman spectroscopy and Fourier transform infrared spectroscopy can also serve as valuable tools to provide unique molecular fingerprints that indicate possible changes over time. FT-IR even revealed specific functional groups in these gemstones that present charming colors.

In this study, three experimental methods were used, with each spectral technique using one method. The experimental setup for LIBS analysis involves the use of a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The Eschelle spectrometer is coupled with an ICCD camera and LIBS software is used to analyze LIBS spectra. FT-IR analysis was performed using the 4100 Jasco spectrometer in the vibration range of 400-4000 cm-1 wavenumber, using potassium bromide as a reference. Raman analysis was performed using a confocal Raman microscope manufactured in Germany under the conditions of 473/532/633 nm laser excitation, z-focusing, and software controlled X-ray sample stage for line scanning and mapping.

Gem enthusiasts, historians, and gem traders will benefit from their ability to track the origin and authenticity of gemstones, allowing them to glimpse the ancient past.

Source: Laser Network

Recomendações relacionadas
  • Laser&Photonics Reviews New Type Quartz Crystal Space Harmonic Modulation for Efficient Vacuum UV Laser

    Professor Zhang Huaijin and Yu Haohai from the Institute of Crystal Materials of Shandong University (the State Key Laboratory of Crystal Materials) proposed a spatial harmonic modulation strategy, which realizes the phase matching conditions that can be manipulated artificially in the new quartz crystal, and realizes the effective frequency doubling within the VUV range. The relevant research is ...

    2023-08-30
    Ver tradução
  • Unsupervised physical neural network empowers stacked imaging denoising algorithm

    In view of the reconstruction problem of stack imaging technology in noisy environment, Lin Nan's team from Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, proposed an innovative method ProPtyNet based on unsupervised physical neural network, which is expected to be applied to chip CD measurement and defect detection. The article was published in Optics and lasers in engin...

    03-25
    Ver tradução
  • The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

    In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, con...

    04-15
    Ver tradução
  • Which automotive parts can use laser soldering technology

    Laser soldering is widely used in the manufacturing of automotive parts. Here are some common automotive parts that can be welded using laser soldering:Automotive electronic control systemEngine Control Unit (ECU): The engine control unit is the "brain" of the car engine, which receives signals from various sensors and controls the operation of the engine based on these signals. Laser soldering ca...

    02-10
    Ver tradução
  • Shanghai Institute of Optics and Mechanics proposes a new scheme of Er doped silicate fiber as an extended L-band broadband amplifier

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on field strength optimization of Er doped silicate fiber as an extended L-band broadband amplifier. Relevant research achievements were published in Optics Letters under the tit...

    2024-06-05
    Ver tradução