Português

New method doubles and accelerates thermal tuning of optical chips, supporting two current and voltage regulation methods

169
2024-04-02 14:36:03
Ver tradução

Silicon based quantum chip technology is one of the hot research directions in the field of integrated photonics. Thanks to compatibility with CMOS technology and silicon material characteristics, silicon-based integrated optical chips and devices have many advantages such as low cost, small size, low power consumption, and high integration, providing an ideal platform for large-scale optical computing, optical quantum computing, and information processing applications.

The Mach Zehnder interferometer (MZI) is a core device for high-precision programming operations in optical (quantum) computing chips. By combining and modulating the MZI and phase shifter, the key step of quantum state encoding can be completed, improving the information processing capability of optical quantum chips.

Specifically, the experimenter adjusts the phase difference of the transmitted light in the upper and lower arms of the MZI by applying different currents and voltages, thereby changing the intensity and phase of the output light, resulting in interference and achieving control of the optical path. To maximize the accuracy of chip calculations, it is necessary to accurately find the functional relationship between the phase shifter and the driving voltage and current. With the sharp increase in the number of connected MZIs on the chip, the combination of current, voltage, and phase shifter results in an exponential increase. Therefore, it is particularly important to find an efficient and feedback based current and voltage regulation method for phase shifters.

Thermal tuning test plan for MZI silicon polishing chip
The Sizhen programmable multi-channel current (voltage) source has a compact size and can achieve up to 64 channels of high-precision constant current and constant voltage output. The experimenter connected the current and voltage source to the PCB download adapter board through a shielded cable via SCSI, which can simultaneously apply appropriate voltage or current to 64 channels and adjust to obtain the desired optical signal. The loading values of each channel are initially random, and the experimenter finds the appropriate value through each iteration of the feedback function to achieve fast switching of current and voltage setting values. Among them, the maximum single channel current value of the series products can reach 100mA.

This solution supports two current and voltage regulation methods:
1. Manual adjustment: Directly input indicators through upper computer software
2. Python instruction automation control: The current and voltage source is programmed in Python to transmit control signals to the chip, then the PD value is detected and fed back to the current and voltage source through computer coding to change the control signal until the desired result is obtained.

Figure (a) shows a chip structure that can achieve any unitary transformation, and Figure (b) shows a chip structure that can achieve any two bit quantum operation, integrating a large number of MZI devices on the chip

Thermal tuning testing scheme for MZI silicon zenith computing chip

Source: Guangxing Tianxia

Recomendações relacionadas
  • High Resolution Visible Light Imaging of Large Aperture Telescopes

    The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric t...

    2023-10-31
    Ver tradução
  • Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

    This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit...

    2023-11-13
    Ver tradução
  • Researchers have implemented a creative approach to reduce stray light using spatial locking technology based on periodic shadows

    Reducing stray light is one of the main challenges in combustion experiments using laser beams (such as Raman spectroscopy) for detection. By using a combination of ultrafast laser pulses and gated ICCD or emICCD cameras, a time filter can be effectively used to remove bright and constant flame backgrounds. When the signal reaches the detector, these cameras can open electronic shutters within the...

    2023-10-16
    Ver tradução
  • Yueming Laser achieves a comprehensive product matrix of "laser+vision+automation+robots"

    Automotive electronics refers to the general term for all electronic devices and components used in automotive products, mainly divided into two major sections: body electronic control systems and on-board electronic devices.Among them, the body electronic control system is mainly composed of engine control system, auto drive system, chassis control system, etc., which is mainly responsible ...

    2023-09-14
    Ver tradução
  • Relevant teams of the Chinese Academy of Sciences breakthrough the application difficulties of ultra compact gas laser system in special scenarios

    Recently, Liang Xu's team from the Laser Center of Anguang Institute, Chinese Academy of Sciences, Hefei Institute of Materia Medica, conducted research on corona discharge fluid control and its application in the gas laser system, proposed an electric field flow field coupling analysis model suitable for multi pin corona discharge scenarios, and revealed the flow velocity distribution characteris...

    2024-07-20
    Ver tradução