Português

Implementing and studying non Hermitian topological physics using mode-locked lasers

222
2024-03-27 16:30:29
Ver tradução

A mode-locked laser is an advanced laser that can generate very short optical pulses with durations ranging from femtoseconds to picoseconds. These lasers are widely used for studying ultrafast and nonlinear optical phenomena, but they have also been proven to be applicable to various technological applications.

Researchers at the California Institute of Technology have recently been exploring the potential of mode-locked lasers as a platform for studying topological phenomena. Their paper was published in the journal Nature Physics, outlining the potential of these lasers in the study and implementation of new non Hermitian topological physics, with various potential applications.

"In the past decade, the idea of utilizing the topological robustness and topological protection of photonic devices has attracted widespread attention, but it is still unclear whether this behavior can provide substantial practical benefits," the main author of the paper, Alireza Marandi, told Phys.org.

We have been exploring this issue, especially for lasers and nonlinear photonic devices, whose functions are essentially nonlinear. By the way, the field of topological physics is also developing around the interaction between topology and nonlinearity, and there are relatively few experimental platforms for such exploration.

Marandi and his colleagues have recently pursued a dual goal in their research. On the one hand, they hope to open up new opportunities for studying nonlinear topological behavior, and on the other hand, they hope to broaden the practical applications of topological physics in mode-locked lasers.

"From an experimental perspective, our platform is a time multiplexed resonator network consisting of many synchronous pulses from long resonators," Marandi explained. Pulses can be coupled to each other in a controllable manner using precise delay lines. This allows us to create a programmable network of large-scale resonators with great flexibility. This is not easy on other platforms.

In an earlier paper published in 2022, researchers explored topological phenomena in large-scale photonic resonators, but particularly in linear states. As part of their new research, they used the same resonator to achieve coupled mode-locked lasers.

The team indicates that the pulse patterns generated by these lasers can benefit from non Hermitian and topological phenomena. Essentially, they created a long cavity, multi pulse, mode-locked laser and introduced a junction inside it.

"The flexibility of our experimental method enables us to study the intersection of topology and laser mode locking, and to achieve non Hermitian topological physics that has not been previously proven in photon systems," Marandi said.

For example, we found that the synergistic effect between non Hermitian topological structures and the nonlinear dynamics of our system spontaneously generates skin patterns in our mode-locked laser. This is in stark contrast to linear non Hermitian topological systems, where external sources must be used to detect skin patterns.

Marandi and his collaborators recently demonstrated the potential of mode-locked lasers in studying topological physics, which has been difficult to obtain experimentally so far. In addition, their research can stimulate mode-locked lasers for the development of new sensing, computing, and communication technologies.

In addition, in their experiment, researchers used their developed laser to confirm the robustness of the mathematical model used to study the behavior of randomly moving particles to the localization induced by disorder. Although this model has been extensively studied before, it has not yet been proven on a mode-locked photon platform.

"In terms of this understanding, we further explored the robustness of the Hatano Nelson model to disorderly induced localization and how it can design robust frequency comb sources," Marandi said. Usually, this robustness to something is followed by sensitivity to other things.
In their next study, Marandi and his colleagues will attempt to use their method to explore the use of the Hatano Nelson model as a sensor with enhanced sensitivity. In addition, they hope that their research can inspire other teams to try using mode-locked lasers to study topological physical phenomena.

"We also believe that our platform can become a fertile ground for exploring a large number of difficult to obtain nonlinear topologies and non Hermitian phenomena," Marandi added. An example that interests us is the interaction between soliton formation and topological behavior.

Source: Laser Net

Recomendações relacionadas
  • Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

    T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.T35 and T103 are very suitable for projects that require...

    2023-10-28
    Ver tradução
  • Abnormal relativistic emission generated by strong interaction between laser and plasma reflector

    The interaction between strong laser pulses and plasma mirrors has been a focus of recent physical research, as they generate interesting effects. Experiments have shown that these interactions can generate a nonlinear physical process called high-order harmonics, characterized by emitting extreme ultraviolet radiation and brief flashes of laser light.Researchers from the Czech Extreme Light Infra...

    2023-12-04
    Ver tradução
  • Breakthrough 8-channel 915nm SMT pulse laser, ushering in a new era of laser radar applications

    The 8-channel 915nm SMT pulse laser can enhance the long-range laser radar system of autonomous vehicle;An 8-channel QFN package certified by AEC-Q102, featuring high performance and efficiency, utilizing proprietary wavelength stabilization technology from AMS Osram;Based on over 20 years of experience in pulse laser technology.Shanghai, China, August 8, 2024- AMS, a leading global optical soluti...

    2024-08-09
    Ver tradução
  • The advanced laser welding machine has been successfully debugged, helping to make a leap in high-performance battery manufacturing!

    Alexander Battery Technologies, a leading company in the field of battery manufacturing, recently announced that it has successfully debugged the world's most advanced laser welding machine, an innovative initiative that will greatly drive the company's production process.Alexander Battery Technologies, as a company dedicated to supporting original equipment manufacturers in bringing lithium-ion b...

    2024-04-28
    Ver tradução
  • Overview of Ultra Short Pulse Laser Processing of Wide Bandgap Semiconductor Materials

    Professor Zhang Peilei's team from Shanghai University of Engineering and Technology, in collaboration with the research team from Warwick University and Autuch (Shanghai) Laser Technology Co., Ltd., published a review paper titled "A review of ultra shot pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN" in the international journal Materials Science in Semiconductor...

    2024-07-30
    Ver tradução