Português

Probe organization of photoacoustic devices using low-cost laser diodes

677
2024-03-06 14:13:44
Ver tradução

Photoacoustic technology provides a non-invasive method for detecting biological tissues, but its clinical application is limited, partly due to the large volume and high cost of laser sources. A compact PA sensing instrument powered by laser diodes for biomedical tissue diagnosis can provide clinical doctors with a practical and effective tool for evaluating breast diseases.

By providing a cost-effective organizational diagnostic approach, compact PA sensing instruments can bridge the gap between PA research and its practical applications. This instrument is the work of a research group at the Indian Institute of Technology Indore.

Researchers integrated multiple laser diodes for PA excitation in a compact housing and developed a pulse current supply unit that can induce the laser diode to generate 25 ns of current pulses at a frequency of 20 kHz. They characterize the optical semiconductor laser tube casing and power supply unit based on pulse width, laser intensity, and repeatability of multiple laser diodes.

In order to improve signal strength, the team concentrated the laser diodes in the casing at one point. This enhances the amplitude of the PA signal and improves the signal-to-noise ratio. The amplitude of the time-domain PA signal indicates that as the number of laser diodes increases, the light energy increases.

Researchers compared laser diode based PA systems with traditional Nd: YAG laser based PA systems and found that these systems exhibited similar PA responses. The amplitude of the acoustic spectrum indicates that the new PA sensing instrument is effective for traditional PA settings.
The team used a compact PA sensing system to study fibrocystic changes in the breast in vitro. Researchers analyzed the spectrum of PA signals to quantitatively evaluate tissue characteristics.

The system distinguishes tissue types based on quantitative spectral parameters. The PA spectral response reveals different spectral patterns corresponding to different tissue types. Compared with normal breast tissue, fibrocystic breast disease tissue exhibits higher dominant frequency peaks and energy.

Fibrocystic breast disease samples exhibit dominant frequency peaks around 1.60 MHz, indicating an increase in tissue density due to increased glandular and stromal elements. In contrast, normal breast tissue shows a lower peak frequency of 0.26 MHz, reflecting its fiber and fat composition. The histopathological examination confirmed these findings and confirmed the correlation between spectral response and tissue characteristics. Researchers also used the system to associate PA spectral parameters with the elastic properties of fibrocystic breast disease tissue compared to normal breast parenchymal tissue samples.

Ultrasound and mammography are currently the most common diagnostic methods for breast diseases, followed by fine needle aspiration cytology. Due to the accuracy issues of these imaging methods, an alternative screening technique is needed to enable clinical doctors to have a deeper understanding of disease diagnosis than traditional methods.

The experimental results indicate that PA sensing instruments can provide a fast, reliable, and non-invasive method to evaluate tissue density and identify pathological changes in breast tissue, thereby enabling more timely intervention and improving results.

The use of advanced signal processing technology and high-frequency transducers can enhance the real-time and in vivo research capabilities of the system, thereby expanding its clinical practicality. In the future, laser diodes of different wavelengths can be merged into the same optical shell to study biological tissues of various wavelengths.
The study was published in the Journal of Biomedical Optics.

Source: Laser Net



Recomendações relacionadas
  • The University of Stuttgart has simplified the detection of nanoplastics

    Detecting the presence of nanoscale plastic particles in the environment has become a topic of concern for industrial societies worldwide, not least since particles of that size can evade the body's blood-brain barrier and damage metabolic processes.Optical technologies have been at the forefront of these monitoring efforts. Recent examples have included the use of stimulated Raman scattering to s...

    há 2 dias
    Ver tradução
  • Progress in research on intrinsic flexible and stretchable optoelectronic devices in the Institute of Chemistry

    Organic polymer semiconductor materials, due to their unique molecular structure and weak van der Waals interactions, are endowed with the characteristics of soluble processing and easy flexibility, and have potential applications in portable and implantable medical monitoring devices. A highly flexible, skin conformal, and excellent spatial resolution X-ray detector is expected to be integrated w...

    2024-04-09
    Ver tradução
  • Harvard University and University of Vienna invented tunable laser chips

    Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that shows smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.Tunable lasers are integral to many technologies, from high-speed telecommunications to medical diagnostics to safet...

    07-16
    Ver tradução
  • Brother launches a series of color LED laser printers for homes and offices

    Brother is an innovative global company that proudly launches its latest series of color LED laser printers. The new printer series is colorful and seamlessly connected, designed specifically for home and small office environments.The company's latest product aims to improve productivity in home and small business environments, combining excellent printing quality with excellent printing speed. Ea...

    2024-03-20
    Ver tradução
  • Laser chip manufacturer Shijia Photon will make a profit of 65 million yuan in 2024

    Shijia Photon disclosed its 2024 annual performance forecast on the evening of January 17th, expecting to achieve a revenue of 1.074 billion yuan in 2024, a year-on-year increase of 42.36%; Net profit attributable to the parent company was 65 million yuan, with a loss of 47.55 million yuan in the same period last year; Deducting non net profit is expected to be 48.1 million yuan, with a loss of 66...

    01-21
    Ver tradução