Português

New Progress: III-V Laser and Silicon Optics Technology Achieve Single Chip High Integration

491
2024-03-01 13:57:17
Ver tradução

Recently, Scientific Photonics, a supplier of silicon photonic integrated circuits (PICs) headquartered in Grenoble, announced that it has successfully integrated III-V-DFB lasers and amplifiers with standard silicon photonic technology into the production process of Tower Semiconductor.



By utilizing proprietary technology and standard silicon photonics, Scientific Photonics has achieved full integration of lasers and amplifiers on a single chip, providing excellent performance, speed, reliability, as well as high-density and low-power advantages for data centers, artificial intelligence, and 5G applications.

How to achieve it?
The implementation of this technology benefits from Tower Semiconductor's large-scale basic PH18M silicon photon foundry technology, which includes low loss waveguides, photodetectors, and modulators.

Scientific Photonics successfully integrated the DFB laser and amplifier onto the back of the wafer. According to the further test of the Scintil circuit by the customer, this integration does not need to be sealed, and at the same time, it shows excellent anti-aging characteristics and stability.

High level evaluations from both parties
Scintil Photonics is an advanced supplier of silicon photonic integrated circuits, providing single-chip integrated lasers and optical amplifiers. Its products are unique in providing higher bit rates for optical communication applications, as well as scalable, cost-effective, and mass-produced PIC (Photonic Integrated Circuit) solutions.

Regarding this breakthrough, Sylvie Menezo, President and CEO of Scientific Photonics, said, "We are honored to have established a partnership with Tower Semiconductor, a leading global wafer foundry. This collaboration marks an important milestone in our efforts to advance communication technology and products."

He added, "Through our long-term cooperation, we have the ability to provide laser enhanced silicon photon technology, redefining integration, performance, and scalability. This will enable Scintil to be produced in large quantities to meet the urgent needs of the market. In addition, our technology shows enormous potential to adapt to the integration of more materials, such as quantum dots and lithium niobate materials."

Edward Preisler, Vice President and General Manager of Tower Semiconductor's RF Business Unit, also expressed his joy: "We are pleased to support Scientific Photonics in this highly integrated solution, which fully utilizes our company's mature production components. The integration of III-V optical amplifiers/lasers is highly consistent with Tower Semiconductor's commitment to bringing cutting-edge silicon photon technology to the market."

Source: OFweek

Recomendações relacionadas
  • Breakthrough in Silicon Based Room Temperature Continuous Wave Topological Dirac Vortex Microcavity Laser

    With the explosive growth of data traffic, the market is extremely eager for hybrid photonic integrated circuits that can combine various optical components on a single chip.Silicon is an excellent material for photonic integrated circuits (PICs), but achieving high-performance laser sources in silicon still poses challenges. The monolithic integration of III-V quantum dot (QD) lasers on silicon i...

    2023-10-26
    Ver tradução
  • Ring Laser Accuracy: Unprecedented Daily Measurement and Mapping of Earth's Rotation

    Scientists at the Technical University of Munich have made significant progress in measuring the Earth's rotation with unprecedented accuracy. Now, the ring laser from the Wettzell Geodetic Observatory can be used to capture data at a quality level unmatched anywhere in the world. These measurements are crucial for determining the position of the Earth in space, assisting climate research, and imp...

    2023-11-14
    Ver tradução
  • Laser giant seeks $100 million financing for $422 million debt restructuring

    On August 6th local time, Luminar, a leading publicly traded company in the field of LiDAR, announced a $422 million debt restructuring and raised $100 million in new capital. This measure marks Luminar taking solid steps in optimizing its capital structure and enhancing its financial stability.In early May this year, this laser radar manufacturer released an open letter disclosing a major strateg...

    2024-08-09
    Ver tradução
  • New technology can efficiently heal cracks in nickel based high-temperature alloys manufactured by laser additive manufacturing

    Recently, Professor Zhu Qiang's team from the Department of Mechanical and Energy Engineering at Southern University of Science and Technology published their latest research findings in the Journal of Materials Science. The research team has proposed a new process for liquid induced healing (LIH) laser additive manufacturing of cracks. By controlling micro remelting at grain boundaries to introdu...

    2024-03-15
    Ver tradução
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    Ver tradução