Português

Turn to 4-inch wafers! Dutch Photonics Integrated Circuit Enterprise Announces Production Expansion and Price Reduction

927
2024-02-03 10:28:04
Ver tradução

Recently, SMART Photonics, a Dutch photonic integrated circuit manufacturer, announced a major decision to transfer its entire production capacity from 3-inch wafers to 4-inch silicon substrates, thereby expanding the production scale of photonic chips and significantly reducing chip prices.

According to the company, SMART Photonics is one of the first photonic integrated circuit foundries to provide 4-inch indium phosphide wafer production.

The above transformation not only increases production scale, but also brings significant advantages: generally speaking, 4-inch wafers contain almost twice the number of chips as 3-inch wafers, which means that production efficiency can be greatly improved. The company stated that this scale effect will translate into lower chip prices, thereby better meeting market demand.

"This shift is not just about the number of wafers. A larger wafer substrate will enable us to better meet the market demand for optical chips," said Guy Backner, Chief Operating Officer of SMART Photonics
He further added that by reducing costs and improving production efficiency, the company is expected to play a greater leading role in the integrated optoelectronic ecosystem.

This transformation has received support from the industry and financial venture capital institutions. Last July, partners such as PhotonDelta, chip equipment giant ASML, and chip manufacturer NXP Semiconductors provided $111 million in financing. In addition, the EU's InterReg Northwest Europe project OIP4NWE has also provided important support for this change.

SMART Photonics has demonstrated its innovative capabilities and forward-looking layout in the field of photonic integrated circuits by shifting production capacity from 3-inch to 4-inch wafers. This transformation not only enhances the company's competitiveness, but also lays a solid foundation for the development of the entire Dutch optoelectronic ecosystem. In the future, the company will fully utilize its financing to expand its manufacturing capabilities and accelerate the development of its PIC technology platform and process design suite.

Source: OFweek Laser Network

Recomendações relacionadas
  • IMEC Introduces World's First 110GHz+ C-Band GeSi EA Modulator

    The nanoelectronics research center IMEC from Belgium announced the successful completion of a significant trial: the fabrication of a 110GHz C-band GeSi electro-absorption modulator on a 300mm silicon photonics platform.Achieving a net data rate of 400Gb/s per lane and optimized for compactness, low latency, and high energy efficiency, imec says its modulator “establishes the foundation for next-...

    10-09
    Ver tradução
  • A new type of all-optical intelligent spectrometer

    Recently, Professor Xu Tingfa's research team from the School of Optoelectronics at Beijing Institute of Technology and Assistant Professor Lin Xing's team from Tsinghua University jointly developed a new type of Opto Intelligence Spectrometer (OIS). The device is based on diffractive neural network technology and achieves precise spectral reconstruction under spatially coherent or spatially incoh...

    2024-07-22
    Ver tradução
  • Coherent Unifies Ultrafast Laser Business at the Glasgow Center of Excellence

    Recently, Coherent, an American laser system solution provider, announced that all of the company's ultra fast laser business, including the manufacturing of all picosecond and femtosecond lasers, will be unified in one place: the Ultra Fast Center of Excellence in Glasgow, Scotland.Previously, Coherent's Ultra Fast Center of Excellence located in Glasgow was already a state-of-the-art mass produc...

    2023-09-22
    Ver tradução
  • Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

    German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.Researcher Alexandro...

    2024-03-13
    Ver tradução
  • JMP: Small hole mode swing laser welding of nickel based high-temperature alloys - simulation, experiment, and process diagram

    IntroductionThe small hole mode swing laser welding has gained increasing recognition due to its ability to bridge gaps, refine microstructures, and enhance the mechanical properties of welds. However, the effects of amplitude, frequency, welding speed, laser beam power, and beam radius on heat flux distribution, melting mode, and three-dimensional temperature field have not been well understood. ...

    04-11
    Ver tradução