Português

Coherent launches 532 nm HyperRapid NXT picosecond laser for ultra precision manufacturing of thin film solar cells

716
2024-01-25 10:33:27
Ver tradução

The leader of material processing industry lasers, Cohen Corporation, announced yesterday the launch of its new HyperRapid NXT industrial picosecond laser, with a working wavelength of 532 nm and an average power of 100 W, which can achieve ultra precision manufacturing of thin film solar cells.

The second generation solar cells, which are expected to achieve a leap in energy efficiency, are mainly based on new technologies such as thin film materials such as perovskite or cross finger back contact plates. These new solar cell technologies are driving the demand for ultra precision marking and slotting tools, which generate electrical contact within the battery and isolate between cells, with very high throughput and consistent, reliable, and cost-effective approaches. Coherent company is launching a new picosecond industrial green laser based on the on-site verified HyperRapid NXT platform, with 100 μ J's output pulse energy and high beam quality. This new type of laser enables second-generation solar panel manufacturers to meet their production growth requirements while maintaining high quality and low cost.

"We are looking forward to taking a big step forward in this new, exciting, and rapidly growing laser market for processing thin-film solar cells," said Dr. Torsten Rauch, Senior Vice President of Solid State Laser Europe Business Unit. Compared to existing nanosecond lasers or low-power ultra short pulse lasers, our new high-power 532 nm HyperRapid NXT laser meets the market's demand for higher process quality and throughput. Our green laser can produce smoother and cleaner streaks, and has the smallest heat affected zone. More importantly, these lasers are built on the same HyperRapid NXT platform, which has been proven multiple times Reliability, and uninterrupted operation in large-scale manufacturing environments, with on-site verified records.

The new HyperRapid NXT utilizes highly differentiated optical components and crystals manufactured internally by Coherent. The new laser includes all standard features of the HyperRapid NXT platform, including stable power modulation, on-demand pulses, and variable repetition rate. The wavelength range of the laser ranges from ultraviolet to near-infrared, including 266 nm, 355 nm, and 1064 nm. The new 532 nm laser will be officially launched in the third quarter of 2024.

The relevant companies provide support to customers through customized service agreements, which are supported by a global service network composed of factory trained service engineers. Through relevant company laboratories, relevant companies collaborate with customers to predict and solve their most difficult manufacturing challenges.
The related company will showcase its extensive material processing products and innovations at the Photonics West 2024 exhibition in San Francisco from January 30th to February 1st, booth # 4805, and SEMICON Korea booth # C668 in Seoul from January 31st to February 2nd.

Source: Laser Net

Recomendações relacionadas
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    Ver tradução
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the field of femtosecond laser air filamentation self focusing threshold research

    Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the repetition rate dependent femtosecond laser air filamentation self focusing threshold. The relevant research results were published in Optics Express under the title "Pulse repetition rate ...

    2024-08-02
    Ver tradução
  • The research results on the implementation of micro active vortex laser using laser nanoprinting technology are published in Nano Letters

    IntroductionVortex beams carrying orbital angular momentum (OAM) are widely used for high-throughput optical information multiplexing, and achieving on chip, small-scale vortex lasers is crucial for promoting the industrial implementation of vortex light reuse technology. Recently, Gu Min, an academician of Shanghai University of Technology, and Fang Xinyuan, an associate professor of Shanghai Uni...

    2023-10-16
    Ver tradução
  • The role of PTFE in laser processing

    Polytetrafluoroethylene (PTFE) has improved the efficiency and repeatability of nanosecond and picosecond laser processing technologies used in microelectronics and display glass manufacturing. In the field of precision manufacturing, the demand for efficient and repeatable processes is crucial. The laser structure of glass and laser ablation of silicon substrates are key areas where precision p...

    2024-07-26
    Ver tradução
  • IPG Q1 revenue of $252 million, co-founder and new CEO of Jiaobang

    Recently, IPG Photonics, a high-performance fiber laser supplier in the United States, released its first quarter financial report as of March 31, 2024.The financial report shows that IPG Photonics revenue in the first quarter was 252 million US dollars, a year-on-year decrease of 27%; The net profit was 19 million US dollars, a year-on-year decrease of 75%. The change in foreign exchange rate res...

    2024-05-07
    Ver tradução