Português

A Large Angle Color Holographic 3D Display System Based on Color LCD Grating

182
2024-01-24 11:52:41
Ver tradução

Holographic display technology provides the ultimate solution for true 3D display, with enormous potential in augmented reality and virtual reality. However, the color and viewing angle of holographic 3D displays mainly depend on the wavelength of the laser and the pixel size of the current spatial light modulator. The inevitable color difference and narrow viewing angle in conventional systems seriously affect the holographic display effect, hindering the application of holographic 3D display in many fields.

In a new paper published in "Light: Science and Applications", a group of scientists led by Professor Qiang Hua Wang from Beihang University in China and their colleagues have developed a 3D display system with a large viewing angle based on color liquid crystal gratings. The proposed system displays a color perspective of 50.12 º without any color difference.

Beihang researchers use specially designed color liquid crystal gratings with the same diffraction angle to perform secondary diffraction on incident RGB light, expanding the viewing angle through secondary diffraction. Color liquid crystal gratings have three different spacing regions in a liquid crystal unit, corresponding to incident light of different wavelengths. In addition, a method for generating chromatic aberration free holograms has been proposed, which, in conjunction with color liquid crystal gratings, achieves large angle color display. By using the proposed system, 3D color objects can be vividly reconstructed without color difference and viewed from a large perspective.

The reported system solves the problems of small viewing angle and severe color difference in traditional holographic 3D display systems, and has good display effects and broad application prospects in medical, industrial and other fields.

Source: Laser Net

Recomendações relacionadas
  • Femtosecond laser-induced plasticity of copper oxide nanowires

    It is reported that researchers from the University of Waterloo in Canada have reported a study on the plasticity of copper oxide nanowires induced by femtosecond laser. The related research was published in Applied Surface Science under the title "Femtosecond laser induced plasticity in CuO nanowires".Metal oxide nanowires are ideal materials for manufacturing nanodevices, especially strain senso...

    2024-07-15
    Ver tradução
  • Google works with magic leap on AR optics and manufacturing

    In the 2010s, Magic leap is one of the most hyped augmented reality companies, with a lot of money, including from Google. When the magic leap one headset was introduced in 2018, it was not a technological breakthrough in display technology that was once derided. Since then, Magic leap has persevered and has now signed a "multifaceted strategic technology partnership" with Google.Google announced ...

    2024-05-31
    Ver tradução
  • Reshaping the Sky: Laser Scanning Drones Innovate Data Collection

    Imagine soaring above the Earth, the world unfolds in patterns and reliefs, and the terrain whispers its secrets in the wind. Now imagine capturing these whispers and translating them into a digital language to draw our world map with unprecedented accuracy. Welcome to the forefront of laser scanning drones, a technological ballet in the sky where the fusion of flight and laser precision is reshap...

    2024-04-07
    Ver tradução
  • French research team successfully develops new orange laser

    A research team in France has reported a novel laser that emits light in the orange region of the spectrum, indicating its potential applications in flow cytometry and astronomical laser guidance.In the research results just published in Optics Express, the team (including researchers from the É cole Polytechnique in Caen, France and Oxxius, a laser manufacturer based in Lannion) claimed that the ...

    03-04
    Ver tradução
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    Ver tradução