Português

Topological high-order harmonic spectroscopy in Communications Physics

517
2024-01-15 17:07:40
Ver tradução

It is reported that researchers from the University of Salamanca in Spain have demonstrated a high-order harmonic spectroscopy scheme generated by the interaction between a structured driving beam and a crystal solid target. This work promotes the topological analysis of high-order harmonic fields as a spectroscopic tool to reveal nonlinearity in the coupling of light and target symmetry. The relevant paper was published in Communications Physics under the title of "Topological high molecular spectroscopy copy".

High order harmonic generation (HHG) is an extreme nonlinear effect that occurs when a strong field laser is focused on a gas medium, resulting in hundreds of orders of high-energy harmonic photons.

In the paper, researchers demonstrated the high-order harmonic spectroscopy scheme generated by the interaction between structured driving beams and crystal solid targets. Unlike isotropic gas targets, researchers have demonstrated the coupling of crystal symmetry with the driving beam topology during high-order harmonic generation (HHG) processes. This coupling feature is encoded into a complex spatial structure that emits harmonics. In particular, researchers have revealed this interwoven photon conversion by studying the HHG of monolayer graphene driven by LPVB.

Figure 1: Overview of topological high-order harmonic spectra in graphene and argon gas.

Figure 2: Far field harmonic emission curves of circularly polarized components on the left (LCP) and right (RCP) sides.

Figure 3: Comparison of orbital angular momentum (OAM) carried by high-order harmonics emitted from anisotropic and isotropic targets.

Researchers have found that, unlike isotropic cases, the harmonics generated by crystal targets can break the conservation of the driving topology based on their compositional symmetry. Researchers have provided an analytical derivation that can (1) predict the topology of high-order harmonic beams from the anisotropic symmetry of the target, and (2) retrieve the anisotropic response of the target from the topology of high-order harmonic beams. Therefore, high-order harmonic spectroscopy based on topological structure can extract spatial resolution information of target nonlinear response, which cannot be obtained by standard spectroscopy techniques.

Figure 4: Near field harmonic emission profiles obtained in anisotropic and isotropic targets.

Figure 5: Retrieve nonlinear response from topological harmonic characteristics.

Although researchers have demonstrated the interaction between the topological structure of vector beam drivers and target symmetry in two-dimensional materials such as graphene, they believe that their research results open up a universal scenario for topological optics, where the non-linear response of the target is coupled with the topological structure of light. Researchers believe that this technology can be further used to characterize more complex targets, such as polycrystalline or heterostructures.

Source: Sohu

Recomendações relacionadas
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of t...

    2024-09-27
    Ver tradução
  • Ruifeng high power ultraviolet laser will become an indispensable tool in the production of thin film solar cells in the future

    With the rise of clean energy and the enhancement of environmental awareness, thin film solar cells are gradually replacing traditional silicon-based solar cells as an efficient energy conversion device.However, to achieve efficient solar cell conversion rates, the key is to ensure that thin film solar cells have clear edges and maximize light absorption. In this regard, the unique advantages of h...

    2023-09-08
    Ver tradução
  • AEROTECH releases updated AUTOMATION1 motion control platform

    Aerotech is a global leader in precision motion control and automation, and every release has made the Automation1 motion control platform even stronger and more user-friendly. Version 2.5 brings TCP socket interface (test version), Automation1 MachineApps HMI development, new auxiliary module for motor settings, and improved machine settings for galvanometer laser scanning heads.Automation1 conti...

    2023-08-14
    Ver tradução
  • Hamamatsu Photonics completes construction of new factory area

    Recently, Hamamatsu Photonics in Japan completed the construction of a new building at Miyakoda Manufacturing Co., Ltd. in Hamami ku, Hamamatsu City. The completion ceremony was held on July 29th, and the factory will start full production in November 2024, increasing overall production capacity by 2.5 times.Source: Hamamatsu PhotonicsIt is reported that Hamamatsu Photonics focuses on the developm...

    2024-08-01
    Ver tradução
  • LIS Technologies closes $11.88 million seed round of financing

    On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing. According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a numb...

    2024-08-22
    Ver tradução