Português

Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

649
2023-12-27 13:50:03
Ver tradução

Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.
Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.

Innovation in mode-locked laser technology
To improve the technology that typically requires bulky desktop devices, Quishi Guo and his colleagues reduced the size of mode-locked lasers to optical chips with integrated nanophoton platforms. The research results show that it provides prospects for the development of ultrafast nanophotonic systems for widespread applications.

The potential of miniaturizing MLL
A mode-locked laser can generate coherent ultra short optical pulses at an extremely fast speed - approximately picoseconds and femtoseconds. These devices have achieved many technologies in the field of photonics, including extreme nonlinear optics, two-photon microscopy, and optical computing.

However, most MLLs are expensive, require high power consumption, and require bulky discrete optical components and equipment. Therefore, the use of ultrafast photon systems is usually limited to desktop laboratory experiments. More importantly, the so-called "integrated" MLL used to drive nanophotonic platforms has key limitations, such as low peak power and lack of controllability.

Breakthrough in Nanophoton MLL Integration
Guo et al. created an optical chip sized integrated MLL by mixing semiconductor optical amplifier chips with a novel thin film lithium niobate nanophotonic circuit.

According to the author, MLL generates ultra short to 4.8 picosecond light pulses at approximately 1065 nanometers, with a peak power of~0.5 watts - the highest output pulse energy and peak power of any integrated MLL in the nanophotonic platform.

In addition, researchers have shown that the repetition rate of integrated MLL can be tuned in the range of~200 MHz and the coherent characteristics of the laser can be precisely controlled, providing a pathway for a completely stable on-chip nanophoton frequency comb source.

Source: Laser Net



Recomendações relacionadas
  • Ultra fast laser nova PulseX Laser completes over 10 million yuan of financing

    PulseX Laser, a rising star in the field of ultrafast lasers, has recently completed a financing of over 10 million yuan, with this round of financing exclusively invested by Changlei Capital.As a representative of the forefront of technology today, ultrafast lasers play an important role in many industries. In the field of material processing, ultrafast lasers, with their ultra short pulse width ...

    2024-07-09
    Ver tradução
  • Scientists demonstrate powerful UV-visible infrared full-spectrum laser

    Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.b. The bright white light circular spots emitted by the CPPLN sample.c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM e...

    2023-08-25
    Ver tradução
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    Ver tradução
  • The semiconductor Institute has made progress in the study of high power and low noise quantum dot DFB single-mode lasers

    Recently, the team of Yang Tao-Yang Xiaoguang, a researcher at the Key Laboratory of Materials Science of the Institute of Semiconductors of the Chinese Academy of Sciences, and Lu Dan, a researcher, together with Ji Chen, a professor at the Zhijiang Laboratory of Zhejiang University, have made important progress in the research of high-power, low-noise quantum dot DFB single-mode lasers.Distribut...

    2023-09-05
    Ver tradução
  • Laser engraving: Researchers have created a revolutionary technology

    Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the charac...

    2023-11-24
    Ver tradução