Português

Europe builds an independent supply chain for Alexander laser crystals for space missions and atmospheric research

463
2023-12-22 14:16:03
Ver tradução

Recently, companies from Lithuania, Italy, and Germany have reached a new milestone in the European independent space mission - based on the Galactic project, they have developed a supply chain for Alexandrite laser crystals in Europe to study changes in the atmosphere and Earth's surface.

The high-power Alexander laser crystals and coatings developed in the GALACTIC project will be used to collect atmospheric and vegetation observation data related to climate change. The goal of the research team is to apply this type of laser crystal to satellite based LiDAR equipment systems for coastline mapping, storm surge modeling, and seabed measurement.

"Drought, heat waves, and floods cause increasing losses every year. It is gratifying that LiDAR instruments equipped with Alexandrite lasers can help us detect atmospheric changes. The near-infrared wavelength of the laser can accurately study atmospheric gases, aerosols, clouds, their motion, and temperature," said Antanas Laurutis, CEO of Altechna, a laser company involved in the project, "Lidar can analyze aerosols, clouds, and atmospheric components in detail, thereby better predicting climate change."

For LiDAR, Alexander laser crystals are actually a valuable material - they can adjust their light wavelength within a certain range for laser applications, approximately between 700 and 860 nanometers.

This adaptability is crucial for technologies such as Raman and Differential Absorption Lidar (DIAL) used for studying the atmosphere. Raman LiDAR recognizes molecules through its unique light pattern, while DIAL systems can recognize gases such as SO2, NOx, and HCl, which can cause acid rain.

The purpose of the GALACTIC mission of the Horizon 2020 project in Europe is to develop replicable Alexandrite crystals coated entirely with European suppliers. Last year, the EU officially announced that space would be a strategic focus of its strategic compass and emphasized the need to develop an EU space strategy with a focus on security and defense.

"For Europe, aerospace is a strategic area, and the supply chain developed during the 'Galactic' project will enable space missions to be conducted independently of other regions," Antanas Laurutis said. "Europe will also avoid export controls, as export controls often make such projects difficult."

Altechna is one of the leading optical engineering companies in the Central and Eastern European Union, contributing to the development of specific coating designs and processes for electron beam and reactive magnetron sputtering equipment.

Researchers studied crystals in Europe and compared them with crystals produced by world-class suppliers, mainly from companies in the United States and China. "Tests have shown that the quality of crystals in the GALACTIC mission is comparable to non European technology solutions," said Laurynas Lukosevicius, chief scientist of Altechna. "This is a big step for Europe to independently use laser technology in space missions."

This new European technology has been validated by the maturity of the aerospace standard TRL 6 technology. "The space standard coating of TRL 6's Alexandrite laser crystal is a key technology for achieving future Earth observation missions. With our partners, we are developing an advanced laser prototype that will enable Europe to obtain more accurate data from atmospheric research," Luko said š Evi č ius said, "For example, using a LiDAR instrument with an Alexandrite laser can help us better identify cloud types and prepare for adverse weather conditions."

Source: OFweek Laser Network

Recomendações relacionadas
  • Observation of laser power changes in ultrafast protein dynamics

    When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state with...

    2024-02-28
    Ver tradução
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    Ver tradução
  • Halloween\Christmas Laser Processing Art Carnival !!

    Chanelink Halloween\Christmas Laser Processing Art CarnivalShow your design talent and win a cool laser engraver cutter.TimeUpload of work and canvassing period: October 25, 2023 - December 25, 2023Winner announcement time : December 29, 2023ContentEligible participant:Laser industry practitioners, enthusiasts, who must be at least 18 years old.Awards:First prize (1...

    2023-10-25
    Ver tradução
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the field of femtosecond laser air filamentation self focusing threshold research

    Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the repetition rate dependent femtosecond laser air filamentation self focusing threshold. The relevant research results were published in Optics Express under the title "Pulse repetition rate ...

    2024-08-02
    Ver tradução
  • Two photon absorption quantum mechanism breaks through the resolution and efficiency limits of optical nanoprinting

    Recently, a research team from the School of Physics and Optoelectronic Engineering at Jinan University has elucidated for the first time the time-dependent quantum mechanism of two-photon absorption and proposed a two-photon absorption (fpTPA) optical nanoprinting technology based on few photon irradiation, successfully breaking through the bottleneck of traditional two-photon printing technology...

    03-06
    Ver tradução