Português

Fujitsu collaborates to research and develop multi band wavelength fiber optic transmission technology

320
2023-12-05 14:15:10
Ver tradução

Recently, Fujitsu and KDDI research company have successfully developed a high-capacity multi band wavelength multiplexing transmission technology using installed optical fibers.
The new technology of the two companies can transmit wavelengths beyond the C-band by using batch wavelength conversion and multi band amplification technology.

Expanding transmission capacity in remote areas
Two companies have stated that fiber optic communication networks using this technology can achieve wavelength transmission, with a wavelength transmission factor 5.2 times that of current commercial optical transmission technologies.

In this way, the installed fiber optic facilities can be utilized to increase communication traffic in a cost-effective and labor-intensive manner. This technology can also more easily expand the transmission capacity of cities and densely populated residential areas, which may be challenging to install and offer the potential to reduce the time required to initiate services and lower costs.

This development is part of the "Research and Development Project for Enhanced Infrastructure of Post 5G Information and Communication Systems" commissioned by the Japan New Energy and Industrial Technology Development Organization (NEDO).

Figure 1: System image using high-capacity multi band wavelength multiplexing transmission technology (Image source: Fujitsu)

NEDO aims to strengthen the development and manufacturing foundation of Japan's post 5G information and communication systems by developing core technologies. Therefore, from October 2020 to October 2023, Fujitsu and KDDI Research Company participated in a project to improve the performance of the next generation 5G optical network. Traditional commercial fiber optic communication networks use single-mode fibers, where light only passes through the center of the fiber and uses the C-band as the signal transmission band of the optical network. However, with the increase in communication traffic, it is expected that the transmission capacity of only the C-band will be insufficient. In order to increase the transmission capacity of each fiber, the two companies aim to increase the wavelength used from the C-band to the L-band, S-band, U-band, and O-band, in order to achieve multi band transmission.

Potential outcomes of optical communication
As part of this project, Fujitsu has established a simulation model that considers the degradation factors of transmission performance in multi band transmission, thus achieving the transmission design of multi band wavelength multiplexing systems. The simulation model reflects the measurement results of commercial optical fiber characteristics and verifies the extracted transmission parameters through an experimental system integrating a wavelength converter/multi band amplifier.

By using this model, Fujitsu has achieved high-precision simulation, reducing the actual measurement error to within 1dB, thus taking into account the interaction between frequency bands and the degradation of transmission performance.

The research of KDDI Institute has made it possible to use twice the frequency bandwidth of traditional C-band in the O-band, which has never been used before in high-density wavelength division multiplexing (DWDM) transmission.

Combining these two technologies, the two companies conducted actual transmission experiments using existing optical fibers and demonstrated multi band wavelength multiplexing transmission in the O, S, C, L, and U frequency bands (transmission distance of 45 kilometers), proving that the possibility of wavelength transmission is 5.2 times higher than the wavelength multiplexing rate of traditional C-band transmission. The two companies have also confirmed the multi band wavelength multiplexing transmission (transmission distance of 560 kilometers) in the S, C, L, and U bands during simulation.

In this project, Fujitsu and KDDI Research established a design method for a multi band wavelength multiplexing system by constructing a simulation model that considers the interaction between different frequency bands and transmission performance degradation factors.

In addition, since the WDM optical signals in the S-band and U-band are respectively generated by the C-band and L-band optical signals through all optical signal processing technology, there is no need to use dedicated transmitters and receivers in the S-band and U-band.

The integration of these technologies enables DWDM transmission in the S-band+C-band+L-band+U-band using coherent transmission technology, utilizing the phase of light to achieve high-speed and high-capacity communication.

This method minimizes the impact of nonlinear noise to the greatest extent possible, thus overcoming the challenges associated with coherent transmission technology and causing distortion of the O-band transmission signal. By omitting signal compensation at the transmitting end and wavelength dispersion compensation at the receiving end, coherent DWDM transmission in the O-band above 9.6 THz was achieved. The O-band is less affected by wavelength dispersion and has the advantages of reducing digital signal processing load and improving energy efficiency.

Source: OFweek Laser Network

Recomendações relacionadas
  • Using a new type of ground laser to track space debris

    The Polish Space Research Center of the Celestial Geodynamics Observatory located in Borowitz near Poznan will enhance its capabilities with a new and powerful laser.The first task of this state-of-the-art device is to enable researchers to accurately track the trajectories of 300 previously identified space debris in no less than six months.Observatory Director Pawe ł Lejba emphasized the i...

    2024-03-14
    Ver tradução
  • French laser giant's profits decline, laser radar business restructuring

    Recently, Marvel Fusion, a pioneer in the field of laser fusion, successfully raised 62.8 million euros (approximately 70.3 million US dollars) in funding. This funding will provide strong impetus for its fusion technology demonstration on existing laser equipment and accelerate the comprehensive technology validation process at its facility in Colorado, with the goal of achieving this milestone b...

    2024-10-09
    Ver tradução
  • Shanghai Optical Machinery Institute has made progress for the first time in hard X-ray zoom beam imaging

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, completed the research of hard X-ray zoom beam splitting imaging on the micro focus X-ray source for the first time, and solved the problem of beam splitter limitation in the hard X-ray band. The related achievements are titled "Bifocal photo scene imaging in the...

    2024-04-08
    Ver tradução
  • Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering

    On May 7, 2024, the official website of the Canadian Academy of Engineering announced that Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering.Dr. Gu BoAcademician of the Canadian Academy of EngineeringFounder/President of Bose Photonics, USADr. Gu Bo is recognized as a pioneer and academic leader in the global field of fiber lase...

    2024-05-07
    Ver tradução
  • DustPhotonic is the first to develop an 800G silicon photonic chip

    Recently, DustPhotonics released a single chip 800G-DR8 silicon photonic chip for data center applications, which is an important milestone in practical photonics in data centers. The company claims that its single-chip solution provides high-performance and easy to implement solutions for system architects.DustPhotonics' 800G-DR8 photonic integrated circuit provides a single chip solution for fib...

    2023-10-13
    Ver tradução