Português

Abnormal relativistic emission generated by strong interaction between laser and plasma reflector

211
2023-12-04 14:24:07
Ver tradução

The interaction between strong laser pulses and plasma mirrors has been a focus of recent physical research, as they generate interesting effects. Experiments have shown that these interactions can generate a nonlinear physical process called high-order harmonics, characterized by emitting extreme ultraviolet radiation and brief flashes of laser light.

Researchers from the Czech Extreme Light Infrastructure ERIC and Osaka University in Japan have recently discovered surprising transitions that occur during the interaction between strong laser pulses and plasma mirrors. This transformation is marked by the anomalous emission of coherent XUV radiation, as outlined in a paper published in the Physical Review Letters.

"The relativistic oscillating mirror is a fascinating concept with enormous potential for strong attosecond pulses and bright XUV generation," one of the researchers conducting this study, Marcel Lamač, told Phys.org.

We are re examining some assumptions from previous work and found that strong self modulation occurs during strong laser mirror interactions, altering the characteristics of surface emitted extreme ultraviolet radiation, which can then propagate abnormally along the surface.

Lamač and his colleagues discovered this interesting finding while testing predictions of previous work in the field. The team conducted various numerical and multi-dimensional intracellular particle simulations with extremely high resolution, with the aim of better understanding the interactions between electrons and ions in the interaction process between solid density plasma and strong laser.

"One of the most direct results of our work is that we must be very careful in target selection and plasma pre control to prevent loss of spatiotemporal coherence in reflected high harmonics," said Lamač.

Due to our discovery that relativistic instability modulation emission may be more effective than reflection of high harmonics within the XUV range, this emission can also be considered a potential efficient XUV source, which requires precise control of experimental conditions to achieve high yields of XUV emission.

The emission of XUV radiation observed by Lamač and his colleagues in simulations exhibits unique and interesting characteristics. Specifically, researchers have found that this coherent radiation propagates parallel to the surface of the plasma mirror. Further calculations link this anomalous emission to the relativistic electron nanobeam oscillations driven by lasers, which originate from the instability of the plasma surface.


"We believe that there is an interesting potential in potentially controlling this mirror self modulation, where enhanced coherence can be achieved in the initial stage of surface instability, resulting in more narrowband coherent XUVs," added Lamač.


Lamač and his collaborators recently collected new insights into the physical processes generated by the interaction between strong laser pulses and plasma mirrors. The simulation results of researchers may soon pave the way for further exploration of the anomalous emissions they observe, potentially bringing new interesting discoveries.


Source: Laser Net

Recomendações relacionadas
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    Ver tradução
  • Rapid and convenient preparation of small-sized metal nanoparticles using microchip lasers

    Liquid pulse laser ablation is a reliable and versatile technique for producing metal nanoparticles in solution. Its advantages include no reducing agent, simple operation, high purity, no need for purification steps, and environmental processing conditions, making it the preferred method for traditional metal NP preparation.The widespread adoption of PLAL in scientific and industrial research has...

    2024-01-30
    Ver tradução
  • Super-resolution fluorescence microscopy utilizes fluorescent probes and specific excitation and emission programs

    Super-resolution fluorescence microscopy surpasses the diffraction limit of what used to be a barrier by using fluorescent probes and specific excitation and emission programs. Most SR technologies heavily rely on image computation and processing to retrieve SR information. However, factors such as fluorescence group photophysics, chemical environment of the sample, and optical settings may cause ...

    2024-01-23
    Ver tradução
  • MKS Instruments announces full year 2024 financial report

    Recently, MKS Instruments released its Q4 and full year financial results for 2024. According to the report, MKS's revenue for the fourth quarter of 2024 reached $935 million, a year-on-year increase of 4.7%, with a GAAP net income of $90 million; In 2024, the annual revenue was nearly 3.6 billion US dollars, a year-on-year decrease of 0.9%. GAAP net revenue was 190 million US dollars, turning los...

    02-20
    Ver tradução
  • Coherent's revenue for 2024 is $5.301 billion

    International laser giant Coherent's Q4 2024 sales exceeded expectations, reaching a historic high!Recently, Coherent released its highest quarterly sales data in history, mainly due to the demand for optical transceivers in artificial intelligence data center applications. For the three months ending December 31, the company's revenue was $1.43 billion, a year-on-year increase of 27% and a 6% inc...

    02-10
    Ver tradução