Português

Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

655
2023-10-17 13:55:41
Ver tradução

Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.

The EX Fusion Liquid Metals Collaborative Research Group was established with the support of the Tokyo University of Science and Technology Open Innovation Platform, with the aim of providing support for research management, intellectual property strategy, and commercialization. The ultimate goal is to promote the implementation of research results developed by the collaborative research group.

In the urgent demand for energy supply that does not emit greenhouse gases, laser fusion reactors have won high expectations globally as a sustainable energy source. Laser nuclear fusion is different from nuclear fusion in that it is a technology that induces nuclear fusion reactions through laser irradiation of fuel, thereby generating energy. It utilizes seawater resources and provides a safe and sustainable energy supply option.

In addition, it also has the ability to flexibly adapt to fluctuations in electricity demand. In the long run, this technology is expected to become a key player in driving the global decarbonization process. However, despite a significant amount of research and development work being carried out worldwide to address technological challenges and improve energy efficiency, commercial laser fusion reactors have not yet been achieved.

EX Fusion, a company that develops laser fusion reactors, has reached a project collaboration with Tokyo Institute of Technology, which conducts academic research on liquid metal fluids. The collaborative research group aims to construct the concept of liquid fuel blankets suitable for laser fusion reactors. It will also develop necessary liquid blanket component technology and conduct extensive joint research to design blanket simulation circuits.

The insights gained from this collaborative research and the liquid metal technology group are expected to be useful not only in the field of nuclear fusion, but also in a wide range of fields such as liquid metal mirrors and environmental purification technologies.
EX Fusion is a start-up company that develops key technologies for laser fusion reactors, including lasers and fuel targets. The company was named one of the "Top 100 Outstanding Risk Enterprises" in 2023 by the major Japanese economic magazine "Toyo Economy". EX Fusion and Tokyo Institute of Technology are leading the way in the research of energy conversion systems utilizing liquid metal fluids. The two sides plan to collaborate to jointly solve technical application problems to maximize the social application of these technologies.

Collaborative research
The collaborative research group will utilize the professional technical knowledge accumulated by Tokyo Institute of Technology to improve the large-scale synthesis technology of high-purity liquid lithium lead fuel breeding materials necessary for commercial reactor operation. It will also develop the final optical system for laser irradiation systems using liquid metal technology.

Conceptual Design of Commercial Laser Fusion Reactors
By integrating these technologies, the collaborative research team will design a blank simulation loop. In addition, it will also consider applying the liquid metal technology developed through collaborative research to environmental purification technologies such as low melting point metal mirrors for deep space exploration and seawater desalination. Both sides aim to accelerate the early realization of laser fusion energy through cooperation.

Future plans
In the next three years, the goal of the collaborative research group is to promote high-purity synthesis methods for liquid fuel cultivation materials, which is key to the laser fusion fuel cycle. The development of this technology aims to support global fusion.

Source: Sohu

Recomendações relacionadas
  • Trumpf collaborates with Mercedes Benz to focus on digital real-time laser maintenance

    In the era of smart factories, Mercedes Benz monitors all fast lasers in its global production network based on cloud, significantly improving system resilience and reducing the risk of machine downtime. The connection between the Mercedes Benz digital ecosystem MO360 and the Trumpf laser for digital prediction services has helped achieve very good dynamic maintenance, and achieved demand based ...

    2024-06-17
    Ver tradução
  • Harvard University and University of Vienna invented tunable laser chips

    Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that shows smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.Tunable lasers are integral to many technologies, from high-speed telecommunications to medical diagnostics to safet...

    07-16
    Ver tradução
  • Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

    Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.John Hall's research focuses on understanding and manipulating s...

    2024-03-18
    Ver tradução
  • British scientists pioneered groundbreaking laser tools to help discover exoplanets

    Physicists from the University of Heriot and the University of Cambridge have developed an innovative laser system called Astrocomb, which can significantly improve the detection of exoplanets. This advanced tool can accurately measure the spectra emitted by nearby stars, which fluctuate due to the gravitational influence of orbiting planets. It is expected that this technology will enhance resear...

    2024-04-02
    Ver tradução
  • NUBURU Announces Second Next Generation Blue Laser Space Technology Contract with NASA

    NUBURU, the leading innovator of high-power and high brightness industrial blue laser technology, announced today that it has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to advance blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lunar and Martian...

    2024-05-13
    Ver tradução