Português

NSF funding for collaboration between researchers from Syracuse University and Cosmic Explorer

616
2023-10-13 14:58:45
Ver tradução

Billions of years ago, in a distant galaxy, two black holes collided, triggering one of the most extreme cosmic events in the universe. The power of this phenomenon is so great that it distorts the structure of spacetime, emitting ripples called gravitational waves.

These waves will eventually be detected on Earth by the Advanced Laser Interferometer Gravity Wave Observatory (LIGO) detector, and teachers from Syracuse University played a leading role in this major discovery. Although members of the university's gravitational wave group spent some time celebrating this incredible feat, they immediately began to think about how to build a new observatory that would enable them to explore more regions of the universe using gravitational waves.

The Space Explorer is the next generation gravitational wave observatory designed by the Center for Gravitational Wave Astronomy and Astrophysics (CGWAA) at Syracuse University. CGWAA was established this autumn as a center for university students and teachers, playing a major role in the design and operation of the Gravity Wave Observatory. The CGWAA team collaborated with scientists from Massachusetts Institute of Technology, Pennsylvania State University, California State University at Fullerton, and the University of Florida, hoping that the Space Explorer could begin exploring the universe in the mid-1930s.

In order to properly view the functionality of Cosmic Explorer, Advanced LIGO has detected approximately 100 black hole collisions since 2015, while Cosmic Explorer will be able to detect every collision in the visible universe - approximately 100000 times a year, or every five minutes. Space explorers will also see about one million neutron stars merging each year, enabling scientists to understand the properties of nuclear matter and the production of heavy elements.

Gravity wave detectors, such as the Space Explorer, are large interferometers. Interferometry is an extremely sensitive measurement technique that uses mirrors, laser beams, and interference (the addition or removal of combined beams) to measure the displacement of mirrors caused by gravitational wave patterns. Advanced detectors help researchers map black holes in the universe, which was previously impossible to achieve with telescopes because unlike stars, black holes do not produce light.

In October 2022, Cosmic Explorer project partners gathered at the Minnobrook Convention Center at Syracuse University to hold a proposal writing seminar, which received over $9 million in federal funding for the project. As part of the NSF commitment, Syracuse University will receive funding of $1.64 million over the next three years.

Recently, researchers from the School of Arts and Sciences who received funding for the Cosmic Explorer project include Stefan Ballmer, a professor of physics and founding director of CGWAA; Georgia Mansell, Assistant Professor of Physics; Craig Cahillane, Professor of Physics Research; Professor Josh Russell and Professor Christopher Scholz from the Department of Earth and Environmental Sciences, whose funding will involve the site evaluation of the proposed observatory.

Without the support of the National Science Foundation, this important task would not have been possible, "Ballmer said. When we established the Center for Gravitational Wave Astronomy and Astrophysics, our idea was to strengthen Syracuse University's position as a pioneer in the field of gravitational wave detection. The awards presented by NSF confirm this commitment and will make the center a key participant in promoting the success of the Space Explorer project.

Source: Laser Network

Recomendações relacionadas
  • Westlake University has made significant breakthroughs in the field of flexible stacked solar cells

    Recently, the team led by Wang Rui from the Future Industry Research Center and the School of Engineering at Xihu University has made significant breakthroughs in the field of flexible stacked solar cells. They have successfully stacked perovskite and copper indium gallium selenide materials together, resulting in a photoelectric conversion efficiency of 23.4%. The related research paper was recen...

    02-05
    Ver tradução
  • The semiconductor laser market is expected to reach $5.3 billion by 2029

    Nowadays, laser technology is widely used in various traditional and emerging fields, including optical communication, material processing, consumer equipment, automotive sensing and lighting, display technology, medical applications for treatment and diagnosis, as well as aerospace and defense.Especially in the semiconductor laser market, it is expected to grow from $3.1 billion in 2023 to $5.2 b...

    2024-12-03
    Ver tradução
  • Nature Photonics | New Comb Laser Assists Stable and Efficient Generation of Multi wavelength Signals

    Recently, researchers have developed a comb laser with higher stability and efficiency. The use of synthetic reflection self injection locking micro comb design enables the laser to achieve stability and increase conversion efficiency by more than 15 times. This efficient, stable, and easy to manufacture design is expected to make rapid progress in fields such as portable sensors, autonomous navig...

    2024-03-02
    Ver tradução
  • Micro optical technology based on metasurfaces has become a hot topic

    Introduction and application of a micro optical platform using metasurfacesMetasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR ...

    2024-02-02
    Ver tradução
  • Researchers use desktop laser systems to generate ultrafast electrons

    In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.Traditionally, laser based particle accelerators require expensive laser...

    2024-03-14
    Ver tradução