Português

Scientists have developed a palm sized femtosecond laser using a glass substrate

222
2023-10-04 14:11:49
Ver tradução

Researchers at the Federal College of Technology in Lausanne (EPFL) have shown that femtosecond lasers suitable for palm size can be manufactured using glass substrates.

Can femtosecond lasers made entirely of glass become a reality? This interesting question prompted Yves Bellouard, the head of the Galata laboratory at the Federal Institute of Technology in Lausanne, to embark on a journey after years of arduous laboratory experiments to calibrate femtosecond lasers.


The Galata laboratory is located at the intersection of optical, mechanical, and material sciences, and considers femtosecond lasers as a key component of Bellouard's research.

Femtosecond lasers generate extremely short and consistent laser pulses, which can be used for various applications, such as laser ophthalmic surgery, nonlinear microscopy, spectroscopy, laser material processing, and more recently, sustainable data storage.
Typically, commercial femtosecond lasers are constructed by assembling optical components and their mounting bases onto a substrate (usually an optical bread board), requiring detailed optical alignment.

Bellouard and his team have designed a solution that involves using commercial femtosecond lasers to manufacture compact femtosecond lasers made of glass, with sizes no larger than standard credit cards, significantly reducing alignment challenges. Their work results have been recorded in the magazine "Optica".
Researchers use commercial femtosecond lasers to carve complex channels on glass, enabling precise placement of key components required for laser systems.
Although micrometer level accuracy has been achieved during the manufacturing process, only the grooves and components cannot achieve the alignment required for laser quality performance. Simply put, the mirror is not fully aligned, resulting in its glass device being unable to function as a laser at this stage.

Based on previous research, scientists have also realized that they can locally manipulate the expansion or contraction of glass. They decided to use this technology to fine tune the alignment of the mirror.

Therefore, the initial etching process was specifically designed to incorporate a mirror into the groove content equipped with micro mechanical bending. These bending designs are used to adjust the position of the mirror when exposed to femtosecond lasers.

This innovative method transforms commercial femtosecond lasers into tools for a second purpose: aligning mirrors. Ultimately, this process resulted in a stable small femtosecond laser.

The ongoing research project at Galata Laboratory will delve into the application of this technology in the field of assembling quantum optical systems. This exploration aims to break through the limits currently achievable in miniaturization and precise alignment.
At present, the alignment process is still under the supervision of manual operators, and after practice, it may take several hours to complete. Despite its small size, this type of laser can generate a peak power of approximately 1 kilowatt and emit pulses with a duration of less than 200 femtoseconds - a duration almost insufficient to allow light to pass through human hair.

Innovative femtosecond laser technology will be spun off to form a new company called Cassio-P, led by Antoine Delgoffe.

Source: Laser Network

Recomendações relacionadas
  • Laser induced 2D material modification: from atomic scale to electronic scale

    Background IntroductionTwo dimensional materials have attracted widespread attention due to their atomic level thickness and unique properties, such as high binding energy, tunable bandgap, and new electronic degrees of freedom (valley electronics). They have many application prospects in fields such as microelectronics, nanophotonics, and nanoenergy. Various two-dimensional materials have their o...

    2024-02-23
    Ver tradução
  • The Role of Active Tunable Laser in GeSn Nanomechanical Oscillator in Nat Nanotechnology

    It is reported that researchers from Nanyang Technological University in Singapore, Federal Institute of Technology Lausanne in Switzerland, Physics Laboratory of Higher Normal University in Paris, National Center for Scientific Research in France, Sorbonne University, City University of Paris, University of Leeds in the UK, and Korean Academy of Science and Technology (KAIST) have reported on the...

    2024-05-14
    Ver tradução
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    Ver tradução
  • Shanghai Microsystems Institute has developed a high-speed photon detector with distinguishable photon numbers

    Recently, Li Hao and You Lixing's team from the Chinese Academy of Sciences Shanghai Institute of Microsystems and Information Technology developed an ultrahigh speed, photon number resolvable optical quantum detector with a maximum count rate of 5GHz and a photon number resolution of 61 by using the sandwich structure superconducting nanowires and multi wires working in parallel. The related rese...

    2024-07-12
    Ver tradução
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    Ver tradução