Português

Laser Photonics cleaning technology simplifies the removal of biofilms in industrial environments

346
2023-09-20 14:41:43
Ver tradução

Laser Photonics Corporation is a leading global industrial developer of CleanTech laser systems for laser cleaning and other material applications, highlighting a key application of its CleanTech laser system.

Wayne Tupuola, CEO of Laser Photonics, commented, "Our CleanTech laser cleaning system provides an efficient and cost-effective method for removing biofilms from various materials and surfaces.

When microorganisms adhere to the surface of an object by secreting viscous gelatinous substances, they form a biofilm in a humid environment. Biofilm can be formed on water treatment system components, food processing plant machinery, medical equipment, and ship hulls. CleanTech laser cleaning allows you to quickly evaporate biofilm on almost any surface through a non-contact, environmentally friendly program that is safe and easy to use for operators.

CleanTech laser sandblasting technology
The CleanTech laser sandblasting technology manufactured by Laser Photonics is environmentally friendly, cost-effective, and time-saving. Applications include rust removal, paint removal, surface treatment, etc. This technology is an excellent alternative to traditional cleaning methods such as sandblasting, dry ice blasting, and other sandblasting techniques.

Source: Laser Network

Recomendações relacionadas
  • Cobot Systems announces the establishment of a partnership between UR+and its laser welding collaborative robot system

    Cobot Systems announced that it has now become a UR+partner and showcased laser welding unit systems. This honor marks an important milestone in the company's journey of providing widely available automated labor solutions. This approval highlights Cobot Systems' commitment to providing innovative solutions compatible with UoRobot (UR) products, ensuring seamless collaboration with integrated lase...

    2024-05-16
    Ver tradução
  • Fiber laser array for single pixel imaging is expected to achieve remote detection

    Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive ar...

    2024-05-15
    Ver tradução
  • Mei Xin Sheng: The development of high-precision polarized light crown products has been completed

    On September 5, when Mei Xin Sheng held an analyst meeting, it said that the company has launched a fully integrated ultra-low power optical proximity detection sensor and a three-in-one ambient light and proximity detection sensor with ultra-high sensitivity, which have entered mass production.The research and development of high-precision polarized light crown products has been completed, the fe...

    2023-09-05
    Ver tradução
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    Ver tradução
  • EO Technologies from South Korea enters the glass substrate processing market

    Recently, EO Technologies, a well-known semiconductor laser processing equipment manufacturer in South Korea, is emerging in the glass substrate processing market.It is understood that EO Technologies is entering the glass substrate TGV market based on its UV laser drilling equipment originally used in PCB substrate technology. TGV technology is the core process for drilling holes inside glass sub...

    2024-06-18
    Ver tradução