Português

Germany Developed Short Wave Green Laser Underwater Cutting Technology

963
2023-09-18 15:22:48
Ver tradução

With the prominent energy issues in various countries around the world, the utilization and development of energy have become a hot topic, and the demand for renewable energy is constantly increasing. The existing underwater infrastructure is no longer sufficient and needs to be dismantled using appropriate modern technology. For example, in order to increase the power of offshore wind power plants, it is necessary to first dismantle the old steel frame structure that is currently below sea level and rebuild more advanced equipment.

Researchers at the Fraunhofer Institute of Materials and Beam Technology (IWS) have developed a shortwave green laser cutting method for seabed cutting, which has multiple advantages compared to commonly used technologies such as saws, automatic wire saws, and plasma cutting machines.

Researchers have stated that a short wave green laser with a power exceeding kilowatt level is a necessary condition for this technology to achieve cutting. In the future, shorter wavelength blue lasers can also be used to achieve this.

Short wave green laser cuts steel under seabed conditions. Source: Fraunhofer IWS

Since its inception, laser cutting technology has made significant progress and has been widely used in the manufacturing industry. However, infrared or other longwave lasers are usually used for cutting in dry environments, assisting in coaxial gas and beam cutting to remove molten metal generated during the cutting process. However, in the marine environment, the degree of absorption, reflection, and scattering of light of different wavelengths by seawater varies, and most lasers are dissipated after a short distance. Auxiliary gases also require complex pipeline systems.

Using green lasers with shorter wavelengths than most industrial lasers to penetrate seawater does not result in significant loss, reducing power loss. Therefore, this type of laser is also more suitable for marine environments. While existing green lasers operate in water, water can discharge the resulting melt from the incision under pressure. This abundant medium in the ocean can replace the cutting gas required in dry environments, thereby eliminating the need for natural gas pipelines.

In addition, gases and gas mixtures (such as air) used in laser cutting applications in dry environments need to be pre compressed, but water does not need to be compressed. Therefore, using seawater as the cutting medium, this technology can conveniently remove melt residues at the interface.

Patrick Herwig, project leader of the Fraunhofer IWS laser cutting team, stated that this method can also be applied to small underwater robots with laser accessories. Because underwater robots can operate underwater in complex environments with high risk, pollution, and even zero visibility, achieving more efficient cutting operations than existing automatic sawing and cutting machines.

On the other hand, laser underwater cutting technology is also more environmentally friendly. The dismantling team does not need to load new blades or other consumables onto the cutting laser, and this system does not generate waste or release hazardous substances into the atmosphere. This performance advantage is particularly important when dismantling old nuclear power plants. If gas is used as the cutting medium, radioactive waste is likely to be expelled from the water surface with bubbles.

At present, the technology is still in the laboratory testing stage. Next, researchers hope to develop the validation scale of the laboratory into a practical application system.

This article is compiled by Optoelectronics based on the content of photonics

Recomendações relacionadas
  • The NIRPS alliance is driven by laser frequency comb technology to advance research on exoplanets

    The Near Infrared Red Planet Search Alliance, jointly managed by the Department of Astronomy at the University of Geneva and the University of Montreal, has received cutting-edge advances in CSEM laser frequency comb technology.The laser frequency comb is a precise and stable light source designed to help the NIRPS alliance unravel the mysteries of distant planets, including the possibility of sea...

    2023-12-13
    Ver tradução
  • GOLDEN laser die-cutting machine will be exhibited at UPAKEXPO 2024

    At the UpakExpo 2024 exhibition to be held in Moscow at the end of January, Chinese company Golden Laser will showcase for the first time two laser die-cutting machines focused on the printing, labeling, and packaging markets in Russia.The Golden Laser LC350 is a web machine designed to handle labels printed on digital and flexographic printing machines. It can cut, die cut, and kiss cut paper, pl...

    2024-01-12
    Ver tradução
  • Redefining optical limits: Engineers discover enhanced nonlinear optical properties in 2D materials

    Recently, according to a paper published in Nature Communications titled "Phonoenhanced nonlinearities in hexagonal boron nitride," engineers from Columbia University collaborated with theoretical experts from the Max Planck Institute of Material Structure and Dynamics to discover that pairing lasers with lattice vibrations can improve the nonlinear optical properties of layered two-dimensional ma...

    2024-02-23
    Ver tradução
  • Internationalization Strategy Enters Stage 2.0 | HSG Hsglaser Thailand Manufacturing Base Holds Grand Opening

    At 9:00 am local time on June 26th, the opening ceremony of Hsglaser Thailand Manufacturing Base was grandly held in Bangkok Industrial Park, Thailand. This not only marks a significant expansion of Hsglaser's global strategic map, but also signifies that its international layout has officially entered a new 2.0 stage, and is another important milestone for Hsglaser to showcase its outstanding str...

    2024-06-27
    Ver tradução
  • Researchers have implemented a creative approach to reduce stray light using spatial locking technology based on periodic shadows

    Reducing stray light is one of the main challenges in combustion experiments using laser beams (such as Raman spectroscopy) for detection. By using a combination of ultrafast laser pulses and gated ICCD or emICCD cameras, a time filter can be effectively used to remove bright and constant flame backgrounds. When the signal reaches the detector, these cameras can open electronic shutters within the...

    2023-10-16
    Ver tradução