Português

A new method of generating laser without the need for mirrors

70
2025-10-30 10:34:50
Ver tradução

A new laser generation method: a laser without a reflector. This study, conducted by a team of physicists from the University of Innsbruck and Harvard University, shows that quantum emitters with spacing smaller than the wavelength can achieve constructive synchronization of photon emission, resulting in bright and extremely narrow bandwidth beams, even without any optical resonant cavities.

The achievement is described in Physical Review Letters; the work was financially supported by the Austrian Science Fund (FWF) and the European Union, among others.

In conventional lasers, mirrors are essential to bounce light back and forth, stimulating coherent emission from excited atoms or molecules, and thus light amplification.

But in the new “mirrorless” concept, the atoms interact directly through their own electromagnetic dipole fields given that interatomic spacing is smaller than the emitted light’s wavelength. When the system is pumped with enough energy, these interactions cause the emitters to lock together and radiate collectively—a phenomenon called superradiant emission.

 


Passive emitters can significantly enhance the emission of light


‘Highly directional and spectrally pure’

The team led by Helmut Ritsch found that this collective emission generates light that is both highly directional and spectrally pure, with a single narrow spectral line, in cases where only a fraction of emitters are excited by incoherent light and the rest of atoms remain unpumped.Since this passive emitter fraction is not broadened by the external light or power broadening, it effectively acts as an optical resonator for the active emitters, in analogy with a conventional laser where the optical resonator and the gain medium are separate physical entities.

“The atoms synchronize their emission and above a certain threshold start to shine light collectively or in unison with each other,” said Anna Bychek, a postdoc from the Department of Theoretical Physics at the University of Innsbruck. “There are still many questions to be studied in future work, but it is clear that atoms build their own feedback mechanism and frequency selection via dipole-dipole interaction in free space.”

Beyond its conceptual significance, this discovery points to a new class of ultra-compact light sources for nanophotonics and precision measurements. Because the emission frequency is determined primarily by the atoms themselves, such systems could provide exceptionally stable optical references for quantum sensors, clocks, or on-chip devices.

The research combines the theory of light-matter interactions with advanced numerical methods to explore how large atomic ensembles behave collectively and emit coherent radiation. The results suggest that with ongoing progress in the field, mirrorless lasing could soon move from theoretical prediction to experimental realization.

Source: optics.org

Recomendações relacionadas
  • Bodor Laser has been approved by Shandong Engineering Research Center

    Recently, the Development and Reform Commission of Shandong Province announced the list of Shandong Engineering Research Centers for 2024. bodor Laser has been recognized as the "Advanced Laser High end Intelligent Manufacturing and Application Shandong Engineering Research Center" and is the only enterprise in the laser intelligent manufacturing industry to be listed.As an important component of ...

    2024-07-17
    Ver tradução
  • Ultra thin two-dimensional materials can rotate the polarization of visible light

    For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate ...

    2024-04-27
    Ver tradução
  • The constantly developing world of all-weather laser satellite communication

    Using light beams for communication is not a new idea, even outside of Star Trek, Star Wars, and other similar fantasy stories. Scientist and science fiction writer Arthur Clark predicted that beam communication, at that time modern satellite communication was just a dream.In 1975, the magazine published an article about laser communication or laser communication equipment. The demonstrati...

    2023-12-01
    Ver tradução
  • Coherent Unifies Ultrafast Laser Business at the Glasgow Center of Excellence

    Recently, Coherent, an American laser system solution provider, announced that all of the company's ultra fast laser business, including the manufacturing of all picosecond and femtosecond lasers, will be unified in one place: the Ultra Fast Center of Excellence in Glasgow, Scotland.Previously, Coherent's Ultra Fast Center of Excellence located in Glasgow was already a state-of-the-art mass produc...

    2023-09-22
    Ver tradução
  • Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

    This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit...

    2023-11-13
    Ver tradução