Português

Michigan State University uses laser pulses to impact gold nanoparticles for crystal growth

85
2025-10-16 10:24:49
Ver tradução

To make crystals suitable for use as optoelectronic materials, the key is to precisely control the crystallization, but this control is difficult.

Producing lead halide perovskites, promising components for next-generation solar cells and photodetectors, has proven particularly challenging, with slow growth rates and uncontrolled nucleation being common issues.

A project at Michigan State University (MSU) has now developed a new way to stimulate crystal growth using laser pulses, which could accelerate the development of these advanced next-gen technologies.

Described in ACS Nano, the seed-free plasmonic heating-driven approach could mean that "the traditionally tricky crystal-growing process is turned on its head."

 

 

Growth potential: controlled crystallization


"With this method, we can essentially grow crystals at precise locations and times," said Md Shahjahan from MSU. "It's like having a front-row seat to watch the very first moments of a crystal's life under a microscope, only here we can also steer how it develops."

The technique leverages plasmonic heating in gold nanoparticles, and the ability of a laser to precisely control the temperature in the immediate vicinity of a nanoparticle's surface. This localized thermal gradient can influence supersaturation conditions in specific areas, and effectively control nucleation and growth.

This offers researchers the ability to "draw" crystals with levels of control that could transform fields ranging from clean energy to quantum technologies, said the project. It could also help expand the understanding of how crystals form, providing "a unique opportunity for real-time visualization of the crystallization process with sub-millisecond resolution using high-speed microscopy."

Optical properties maintained

In trials using methyl-ammonium lead bromide (MAPbBr3) perovskites, the team employed a 660-nanometer laser, tuned to match the localized surface plasmon resonance (LSPR) behavior of the gold nanoparticles.

Unlike many other solutes, MAPbBr3 exhibits a decrease in solubility with rising temperature, so the laser's localized heating causes the precursor solution to become supersaturated near the surface, driving the formation of stable crystal nucleii which then act as seeds for further growth.

"We found that in a narrow range around 60 mW laser power, there is an optimal thermal environment at the focal spot, whereby single crystals nucleate and continue to grow steadily," wrote the project in its paper. The crucial optical properties of the resulting crystals were later found to be comparable to naturally grown counterparts.

The project's next steps will include using multiple lasers of different colors to draw even more intricate crystal patterns, and attempting to create entirely new materials that can't be made through conventional methods.

"Now that we can 'draw' crystals with lasers, the next step is to make larger and more complex patterns, and to test how these crystals perform in real devices," said Elad Harel from the MSU DeepSpec Lab. "We're just beginning to scratch the surface of what’s possible."

Source: optics.org

Recomendações relacionadas
  • WEC acquires precision laser cutting giant Laser Profiles Ltd

    Recently, WEC Group, a leading engineering and manufacturing company in the UK, announced that it has completed the acquisition of Laser Profiles Ltd, a precision laser cutting leader in Bournemouth. For over 40 years, WEC Group has been providing manufacturing, laser cutting, precision machining, waterjet cutting, powder coating, and CCTV installation solutions.The company stated that the acqui...

    2024-08-19
    Ver tradução
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    Ver tradução
  • Israeli startup has developed a new laser powder bed fusion technology (SLS)

    Starting company 3DM from Israel has developed a new laser powder bed fusion technology (SLS) and recently released its first product. It is reported that the new technology developed by this young company established in 2016 will open up the possibility of new materials.3DM quantum cascade laserThe quantum cascade laser (QCL) stands out in the competition of 3DM in the SLS field. QCL was develope...

    2023-10-27
    Ver tradução
  • Laser Wire Solutions and HumanTek Jointly Enter the Korean Laser Wire Stripping Market

    Recently, Laser Wire Solutions officially welcomed its important distribution partner in South Korea - HumanTek. This cooperation marks the official establishment of HumanTek as a branch of Laser Wire Solutions in Korea, and both parties will work together to provide excellent services for the Korean laser wire stripping market.HumanTek, with its deep foundation in the Korean market and strong pro...

    2024-07-03
    Ver tradução
  • Manz AG officially announces its application for bankruptcy restructuring

    Last month, Manz AG officially announced that the company is about to undergo bankruptcy restructuring. The board of directors of the company believes that due to insufficient liquidity and excessive debt, Manz AG intends to apply for bankruptcy proceedings in accordance with bankruptcy laws. The application is expected to be submitted in the next few days. Manz AG is headquartered in Reutlingen...

    01-07
    Ver tradução