Português

Chinese researchers enhance perovskite lasers by suppressing energy loss

1052
2025-08-25 10:23:09
Ver tradução

Limiting Auger recombination enables “record” quasi-continuous wave laser output.

For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.
Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that makes them difficult and costly to combine with mainstream silicon technology.

All-inorganic perovskite films have emerged as a promising alternative because they can be produced inexpensively, work with many substrate types, and offer strong optical properties. But one major obstacle has stood in the way: at room temperature, it has been difficult to get perovskite lasers to run in continuous or near-continuous modes without quickly losing their charge carriers to an effect known as Auger recombination.

 


Suppressing Auger recombination for high-performance perovskite VCSELs


A research team at Zhejiang University, Hangzhou, China, has demonstrated a simple method to overcome this problem, leading to record-setting performance for perovskite lasers under near-continuous operation.

As reported in Advanced Photonics, their approach uses a volatile ammonium additive during the annealing process of polycrystalline perovskite films. This additive triggers a “phase reconstruction” that removes unwanted low-dimensional phases, reducing channels that accelerate Auger recombination. The result is a pure 3D structure that better preserves the charge carriers needed for lasing, without adding significant optical loss.

‘Auger recombination’

To understand the improvement, the team analyzed how electrons and holes recombine under different pumping conditions. Auger recombination—where energy from a recombining electron-hole pair is given to another carrier instead of emitted as light—becomes especially problematic when the input light is delivered in longer pulses or continuous beams.

In those situations, carrier injection occurs on a timescale similar to or longer than the Auger lifetime, leading to rapid carrier loss and preventing the build-up of population inversion needed for lasing. By suppressing this process, the researchers were able to sustain the carrier densities required for efficient stimulated emission.


High-performance perovskite lasing via phase-reconstruction Auger suppression. Click for info


With their optimized films, the team built a single-mode vertical-cavity surface-emitting laser (VCSEL) that achieved a low lasing threshold of 17.3 μJ/cm2 and an impressive quality factor of 3850 under quasi-continuous nanosecond pumping. This performance marks the best reported to date for a perovskite laser in this regime.

The results point toward a practical route for making high-performance perovskite lasers that could work under true continuous-wave or electrically driven conditions—key milestones for their integration into future photonic chips and potentially flexible or wearable optoelectronic devices.

Source: optics.org

Recomendações relacionadas
  • Research progress on machine learning for defect detection and prediction in laser cladding process

    It is reported that researchers from Foshan University, the Institute of Chemical Defense of the Academy of Military Sciences, the National Defense Technology Key Laboratory of Equipment Remanufacturing Technology of the Armored Forces Academy, and Chengdu State owned Jinjiang Machinery Factory have summarized and reported the latest progress of machine learning in defect detection and prediction ...

    01-17
    Ver tradução
  • Scene Cinemas Unveils Cinematic Changes with IMAX with Laser Upgrade

    Under the visionary leadership of acclaimed producer Hisham Abdel Khalek, Scene Cinemas proudly presents a revolutionary upgrade to its multiplex – IMAX with Laser. This cutting-edge upgrade, featuring a next-generation laser projection and multi-channel sound system exclusively for IMAX theaters, promises an unmatched cinematic journey.IMAX with Laser has a state-of-the-art 4K laser project...

    2023-12-07
    Ver tradução
  • Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

    The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or ...

    2024-08-05
    Ver tradução
  • The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

    High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.Especially fiber laser due to stable and reliable operation characteristics, compact structure...

    2023-09-04
    Ver tradução
  • Personnel changes at Optimax, a precision optical manufacturer

    On November 25th, Optimax, the largest precision optics manufacturer in the United States, announced the appointment of Joseph Spilman as CEO and Pete Kupinski as President. After developing a comprehensive succession plan, Optimax CEO Rick Plympton will retire along with President and Founder Mike Mandina.Mandina stepped down in 2021 and passed on the title of CEO to Spilman, strategically appo...

    2024-11-28
    Ver tradução