Português

The ECSTATIC fiber optic project worth 5.1 million euros aims to prevent bridge collapse

506
2025-08-18 10:25:32
Ver tradução

A new European research project is exploring whether the same fibre-optic cables that carry our internet could also serve as real-time sensors for hidden damage in infrastructure, including bridges, railways, tunnels and energy pipelines.

 


The €5.1 million ECSTATIC project, coordinated by Aston University in the UK, is trialling this breakthrough approach in a major UK city, using a heavily-used railway viaduct as its first live test site. The goal is to detect subtle structural shifts, stress, and vibrations in real time, using laser light pulses sent through fibre-optic cables already embedded right beneath our feet.

“Our aim is to create a global nervous system for critical infrastructure,” said Prof. David Webb, ECSTATIC project coordinator. “We are hoping to turn existing fiber-optic cables into a 24/7 early-warning system, detecting the tiniest tremors or stress fractures before they become catastrophic. If successful, it will be the difference between fixing a fault and cleaning up a tragedy.”

Light listens

Installing physical sensors across entire transport and energy networks would cost billions and cause major disruption. But the ECSTATIC project is taking a different route: it uses the infrastructure that’s already in place.

At the project’s first demonstration site (a major 19th-century rail viaduct carrying tens of thousands of trains per year), researchers will send ultra-precise laser pulses through buried fiber-optic cables. As trains pass overhead, the fibers subtly flex and vibrate. These movements change how the light behaves inside the cable, altering the phase and polarisation of the light, creating an optical fingerprint of the forces acting on the structure.

By measuring these changes and interpreting them using a new dual-microcomb photonic chip and AI signal processing, ECSTATIC aims to pinpoint early warning signs of damage or fatigue. Significantly, it works without interrupting internet traffic and without laying a single new cable.

“Cracks in bridges, viaducts, or tunnels don’t announce themselves; structures wear down gradually and silently, with the first signs of failure remaining invisible until it’s too late,” added Prof. Webb. “The UK and many places across Europe have hundreds of ageing railway bridges, with millions of vehicles passing under or over them each year. Many of the UK bridges date back to Victorian times, which could present a ticking time-bomb unless we take decisive steps to monitor them now.”

Preventing disasters

The need for early-warning systems is clear from recent bridge collapses in Europe that have cost lives and paralysed cities. In Italy, the Genoa Morandi Bridge disaster in 2018 killed 43 people when a 200-meter section of highway collapsed, despite internal warnings about structural risk years earlier. As recently as last year in Germany, the Carolabrücke in Dresden – a vital lifeline for the city – partially collapsed without warning. The incident severed critical utility lines, leaving parts of the city without hot water for several hours and triggering widespread transport disruption.

These events, though rare, reveal how vulnerable infrastructure can become when ageing structures are left unchecked, and how devastating the consequences can be. ECSTATIC aims to help authorities act before warning signs become disasters, by giving them better data, earlier, and without the need to install costly or disruptive new sensor systems.

With more than five billion kilometers of optical fiber installed across the globe, the potential for ECSTATIC’s technology is enormous, say its partners. If the trials in the UK prove successful, the approach could be rolled out across Europe’s transport and energy networks, enabling safer, smarter infrastructure monitoring at a fraction of the cost of traditional systems.

The project runs until July 2028. It brings together 13 partners from across Europe, including universities in Padova, L’Aquila, Chalmers, Alcalá, and West Attica, alongside industry groups Telecom Italia Sparkle, OTE Group, Nokia, Network Rail, MODUS, and Swiss SME Enlightra SARL, as well as the Greek seismology specialists NOA.

Dates for Photonics Partnership Annual Meeting 2026 announced
Photonics21, the European photonics industry platform, has announced that the Photonics Partnership Annual Meeting 2026 will take place will at the DoubleTree by Hilton Brussels City hotel on 9 & 10 June 2025. Next year’s event will focus on photonics in the next EU Framework Programme and will present the new Photonics Strategic Research and Innovation Agenda (2026) to the European Commission.

Photonics21 invites the industry in Europe to “take the opportunity to get the latest updates on the next EU Framework Programme and to network with your peers from the European photonics community.” The draft event programme as well as the link to the online registration and any further information will be published on the photonics21 website within the next months.

Source: optics.org

Recomendações relacionadas
  • Statsndata predicts that the light detection and ranging market will experience vigorous development globally in 2029

    The Light Detection and Ranging (LiDAR) market embodies the technology of remote sensing, surveying, and the use of laser pulses to measure distance and generate detailed three-dimensional models of objects, terrain, and environment.The LiDAR system emits a laser beam and measures the time required for the light to return to the surface, creating accurate and high-resolution digital representation...

    2023-08-31
    Ver tradução
  • Fraunhofer ILT utilizes short pulse lasers to achieve high-speed optical stamping

    At the Fraunhofer Institute for Laser Technology (ILT), researchers in collaboration with RWTH Aachen University – Chair for Technology of Optical Systems (RWTH-TOS) are using a spatial light modulator (SLM) to shape the beam of an ultrashort pulse laser precisely into the desired pattern to apply to the surface of a workpiece.The developers say that this approach “significantly speeds up processi...

    09-25
    Ver tradução
  • ZLDS100, a British high frequency laser displacement sensor, monitors multipoint vibration of silencers

    A muffler is a key component of a car's exhaust system, designed to reduce noise levels and emissions. The vibration of a muffler can have a significant impact on its performance and life. In order to understand the performance and behavior of the muffler, it is necessary to make multi-point vibration measurement. First, it enables engineers to assess the structural integrity and durability of a m...

    2023-08-04
    Ver tradução
  • MKS Malaysia Penang Supercenter Factory Holds Groundbreaking Ceremony

    Recently, MKS Instruments held a groundbreaking and celebration ceremony for its Supercenter factory in Penang, Malaysia.This important moment has been witnessed jointly by the Malaysian Investment Development Authority (MIDA) and Invest Penang, which will help meet the growing demand for semiconductor equipment for wafer manufacturing in the region and globally. This advanced factory, covering ...

    2024-11-01
    Ver tradução
  • HP100A-50KW-GD laser power detector for measuring extremely high power laser beams

    The HP100A-50KW-GD laser power detector is mainly designed for manufacturers of high-power lasers and laser systems, factories that use high-power lasers to cut thick metal parts, and military applications.The HP100A-50KW-GD adopts a gold reflector cone and a reduced back reflection geometry, which can capture 97% of incident light and process up to 50 kW of continuous laser power. The back reflec...

    2024-01-16
    Ver tradução