Polski

Nankai University makes progress in the field of free electron photon interactions

236
2025-02-11 15:45:36
Zobacz tłumaczenie

Recently, a research team led by Professor Cai Wei and Professor Xu Jingjun from the School of Physical Sciences at Nankai University has experimentally confirmed for the first time the generation of polaritons, also known as Smith Purcell radiation, at the two-dimensional scale, and further demonstrated the ability of free electrons to regulate two-dimensional Smith Purcell radiation. The research findings were published online in the internationally renowned journal Physical Review Letters under the title "Smith Purcell Radiation in Two Dimensions".

Electron photon interaction is one of the core topics in physics research. When free electrons bombard an optical structure or pass through its vicinity, it can generate electromagnetic radiation, a phenomenon commonly known as free electron radiation (or cathodoluminescence). The most famous example of free electron coherent radiation is Cherenkov radiation, which has significant applications in high-energy particle detection and was awarded the Nobel Prize in Physics in 1958. As an extension of Cherenkov radiation, Smith Purcell radiation can be generated when charged particles fly over periodic structured surfaces, providing a new solution for utilizing electrons to generate and manipulate light.

Over the past 70 years, the use of Smith Purcell radiation to generate light in three-dimensional space has attracted widespread attention. In recent years, with the rise of nanophotonics and two-dimensional materials, free electrons have injected new vitality into this field as efficient sources of photoexcitation, attracting attention from physicists, materials scientists, engineers, and other fields. As one of the important physical mechanisms for the generation of on-chip light sources, the generation and regulation of two-dimensional Smith Purcell radiation has become a critical issue that urgently needs to be addressed.

The figure shows a schematic diagram of two-dimensional Smith Purcell radiation generated by a free electron excitation periodic nanopore array

The research team observed two-dimensional Smith Purcell radiation through the interaction between free electrons and the designed metal nanopore array, and further demonstrated the active controllability of the two-dimensional Smith Purcell radiation direction by introducing the two-dimensional phased array radar effect. This innovative achievement not only deepens the understanding of the interaction between free electrons and light, but also has significant implications for constructing two-dimensional optical platforms that utilize electrons for generation and manipulation.

This work was first completed by Nankai University, with Sun Zhiguo, a doctoral student from Nankai University, as the first author, and Professors Cai Wei and Xu Jingjun from Nankai University as co corresponding authors. The relevant work has received funding from key research and development projects of the Ministry of Science and Technology of China, major projects of basic and applied basic research in Guangdong Province, and projects funded by the National Natural Science Foundation of China.

Source: opticsky

Powiązane rekomendacje
  • Shanghai Microsystems Institute has developed a high-speed photon detector with distinguishable photon numbers

    Recently, Li Hao and You Lixing's team from the Chinese Academy of Sciences Shanghai Institute of Microsystems and Information Technology developed an ultrahigh speed, photon number resolvable optical quantum detector with a maximum count rate of 5GHz and a photon number resolution of 61 by using the sandwich structure superconducting nanowires and multi wires working in parallel. The related rese...

    2024-07-12
    Zobacz tłumaczenie
  • EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

    The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerosp...

    2024-04-15
    Zobacz tłumaczenie
  • German research institute develops a new nanosecond laser process

    Recently, the Fraunhofer Institute (HHI) has developed a technology for processing aluminum alloy materials using reactive gas assisted nanosecond lasers, which can be used to produce electronic box samples for spacecraft manufacturing. This development project is part of the NanoBLAST project, in close collaboration with thermal engineering company Azimut Space GmbH, aimed at manufacturing surfac...

    2024-09-10
    Zobacz tłumaczenie
  • Laser power supply leading enterprise Lianming Power has completed a B-round financing of tens of millions of RMB

    Shenzhen Lianming Power Supply Co., Ltd. (hereinafter referred to as "Lianming Power") announced the completion of a B-round financing of tens of millions of yuan in the near future. The fund managed by Jiangsu Jiuyu Investment Management Co., Ltd. completed the A-round investment in Lianming Power in December 2021. Recently, Jiuyu Investment, as an old shareholder, continued to increase its inves...

    2023-09-23
    Zobacz tłumaczenie
  • Beyond Limits: The Amazing Power of Water in Laser Development

    Water helps to generate ultra continuous white lasers with an extremely wide wavelength range.Researchers have made significant progress in creating ultra wideband white laser sources, which have a wide wavelength range from ultraviolet to far-infrared. These advanced lasers are used in various fields, including imaging, femtosecond chemistry, telecommunications, laser spectroscopy, sensing, and u...

    2024-02-26
    Zobacz tłumaczenie